Fejér–Pachpatte–Mercer-Type Inequalities for Harmonically Convex Functions Involving Exponential Function in Kernel
In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators wi...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-03, Vol.2022, p.1-19 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, fractional variants of Hermite–Hadamard, Hermite–Hadamard–Fejér, and Pachpatte inequalities are studied by employing Mercer concept. Firstly, new Hermite–Hadamard–Mercer-type inequalities are presented for harmonically convex functions involving fractional integral operators with exponential kernel. Then, weighted Hadamard–Fejér–Mercer-type inequalities involving exponential function as kernel are proved. Finally, Pachpatte–Mercer-type inequalities for products of harmonically convex functions via fractional integral operators with exponential kernel are constructed. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2022/7269033 |