Finite subunitals of the Hermitian unitals

Every finite subunital of any generalized hermitian unital is itself a hermitian unital; the embedding is given by an embedding of quadratic field extensions. In particular, a generalized hermitian unital with a finite subunital is a hermitian one (i.e., it originates from a separable field extensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry 2022-04, Vol.113 (1), Article 22
Hauptverfasser: Grundhöfer, Theo, Stroppel, Markus J., Van Maldeghem, Hendrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of geometry
container_volume 113
creator Grundhöfer, Theo
Stroppel, Markus J.
Van Maldeghem, Hendrik
description Every finite subunital of any generalized hermitian unital is itself a hermitian unital; the embedding is given by an embedding of quadratic field extensions. In particular, a generalized hermitian unital with a finite subunital is a hermitian one (i.e., it originates from a separable field extension).
doi_str_mv 10.1007/s00022-022-00636-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638495028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638495028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-171e1c1a2111c97848aab3cf2f9089e77eaaff53cdc539081d7864d9450128dc3</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKLgWv0BTwvehOh7SXaTHKXYVih40XNIs4lusbs12T3496bdgjcPwzzem5kHQ8gtwgMCyMcEAIzRI6DmNRVnpEDBgCqt5TkpAISkTNTqklyltM1yzmpdkPtF27WDL9O4GfNgv1LZh3L49OXKx107tLYrT4drchEy-ZsTz8j74vltvqLr1-XL_GlNHUcxUJTo0aFliOi0VEJZu-EusKBBaS-ltzaEirvGVTyvsJGqFo0WFSBTjeMzcjfl7mP_Pfo0mG0_xi6_NKzmSugKmMoqNqlc7FOKPph9bHc2_hgEc-jETJ2YIw6dGJFNfDKlLO4-fPyL_sf1C94BYnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638495028</pqid></control><display><type>article</type><title>Finite subunitals of the Hermitian unitals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Grundhöfer, Theo ; Stroppel, Markus J. ; Van Maldeghem, Hendrik</creator><creatorcontrib>Grundhöfer, Theo ; Stroppel, Markus J. ; Van Maldeghem, Hendrik</creatorcontrib><description>Every finite subunital of any generalized hermitian unital is itself a hermitian unital; the embedding is given by an embedding of quadratic field extensions. In particular, a generalized hermitian unital with a finite subunital is a hermitian one (i.e., it originates from a separable field extension).</description><identifier>ISSN: 0047-2468</identifier><identifier>EISSN: 1420-8997</identifier><identifier>DOI: 10.1007/s00022-022-00636-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>50 Years of Journal of Geometry ; Embedding ; Fields (mathematics) ; Geometry ; Mathematics ; Mathematics and Statistics ; Number theory</subject><ispartof>Journal of geometry, 2022-04, Vol.113 (1), Article 22</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-171e1c1a2111c97848aab3cf2f9089e77eaaff53cdc539081d7864d9450128dc3</cites><orcidid>0000-0002-3163-903X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00022-022-00636-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00022-022-00636-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Grundhöfer, Theo</creatorcontrib><creatorcontrib>Stroppel, Markus J.</creatorcontrib><creatorcontrib>Van Maldeghem, Hendrik</creatorcontrib><title>Finite subunitals of the Hermitian unitals</title><title>Journal of geometry</title><addtitle>J. Geom</addtitle><description>Every finite subunital of any generalized hermitian unital is itself a hermitian unital; the embedding is given by an embedding of quadratic field extensions. In particular, a generalized hermitian unital with a finite subunital is a hermitian one (i.e., it originates from a separable field extension).</description><subject>50 Years of Journal of Geometry</subject><subject>Embedding</subject><subject>Fields (mathematics)</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number theory</subject><issn>0047-2468</issn><issn>1420-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMFKAzEUDKLgWv0BTwvehOh7SXaTHKXYVih40XNIs4lusbs12T3496bdgjcPwzzem5kHQ8gtwgMCyMcEAIzRI6DmNRVnpEDBgCqt5TkpAISkTNTqklyltM1yzmpdkPtF27WDL9O4GfNgv1LZh3L49OXKx107tLYrT4drchEy-ZsTz8j74vltvqLr1-XL_GlNHUcxUJTo0aFliOi0VEJZu-EusKBBaS-ltzaEirvGVTyvsJGqFo0WFSBTjeMzcjfl7mP_Pfo0mG0_xi6_NKzmSugKmMoqNqlc7FOKPph9bHc2_hgEc-jETJ2YIw6dGJFNfDKlLO4-fPyL_sf1C94BYnA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Grundhöfer, Theo</creator><creator>Stroppel, Markus J.</creator><creator>Van Maldeghem, Hendrik</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3163-903X</orcidid></search><sort><creationdate>20220401</creationdate><title>Finite subunitals of the Hermitian unitals</title><author>Grundhöfer, Theo ; Stroppel, Markus J. ; Van Maldeghem, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-171e1c1a2111c97848aab3cf2f9089e77eaaff53cdc539081d7864d9450128dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>50 Years of Journal of Geometry</topic><topic>Embedding</topic><topic>Fields (mathematics)</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grundhöfer, Theo</creatorcontrib><creatorcontrib>Stroppel, Markus J.</creatorcontrib><creatorcontrib>Van Maldeghem, Hendrik</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grundhöfer, Theo</au><au>Stroppel, Markus J.</au><au>Van Maldeghem, Hendrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite subunitals of the Hermitian unitals</atitle><jtitle>Journal of geometry</jtitle><stitle>J. Geom</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>113</volume><issue>1</issue><artnum>22</artnum><issn>0047-2468</issn><eissn>1420-8997</eissn><abstract>Every finite subunital of any generalized hermitian unital is itself a hermitian unital; the embedding is given by an embedding of quadratic field extensions. In particular, a generalized hermitian unital with a finite subunital is a hermitian one (i.e., it originates from a separable field extension).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00022-022-00636-4</doi><orcidid>https://orcid.org/0000-0002-3163-903X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-2468
ispartof Journal of geometry, 2022-04, Vol.113 (1), Article 22
issn 0047-2468
1420-8997
language eng
recordid cdi_proquest_journals_2638495028
source SpringerLink Journals - AutoHoldings
subjects 50 Years of Journal of Geometry
Embedding
Fields (mathematics)
Geometry
Mathematics
Mathematics and Statistics
Number theory
title Finite subunitals of the Hermitian unitals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20subunitals%20of%20the%20Hermitian%20unitals&rft.jtitle=Journal%20of%20geometry&rft.au=Grundh%C3%B6fer,%20Theo&rft.date=2022-04-01&rft.volume=113&rft.issue=1&rft.artnum=22&rft.issn=0047-2468&rft.eissn=1420-8997&rft_id=info:doi/10.1007/s00022-022-00636-4&rft_dat=%3Cproquest_cross%3E2638495028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638495028&rft_id=info:pmid/&rfr_iscdi=true