A second-order low-regularity integrator for the nonlinear Schrödinger equation
In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the d dimensional torus T d . The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76, 2022 ). It is explicit and efficient to...
Gespeichert in:
Veröffentlicht in: | Advances in continuous and discrete models 2022-03, Vol.2022 (1), Article 23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Advances in continuous and discrete models |
container_volume | 2022 |
creator | Ostermann, Alexander Wu, Yifei Yao, Fangyan |
description | In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the
d
dimensional torus
T
d
. The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76,
2022
). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in
H
γ
(
T
d
)
for initial data in
H
γ
+
2
(
T
d
)
for any
γ
>
d
/
2
. This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986,
2019
).
The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work. |
doi_str_mv | 10.1186/s13662-022-03695-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638312960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638312960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8484028a38b5ddefc075efbe3410430b236e2748d24d12cdc552259dd102443e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWLQv4GrAdTS5N5PJLEvxDwoK6jpMJ5l2ypi0yQzSF_MFfDFTR9CVi8O9i_Odyz2EXHB2xbmS15GjlEAZJKEsc6qOyAQK5FQA5sd_9lMyjXHDGIMSsGBqQp5mWbS1d4b6YGzIOv9Og10NXRXafp-1rrerUPU-ZE1Sv7aZ865rna1C9lyvw-eHad0qgXY3VH3r3Tk5aaou2unPPCOvtzcv83u6eLx7mM8WtEaJPVVCCQaqQrXMjbFNzYrcNkuLgjOBbAkoLRRCGRCGQ23qPAfIS2M4AyHQ4hm5HHO3we8GG3u98UNw6aQGiQo5lJIlF4yuOvgYg230NrRvVdhrzvShPD2Wp1N5-rs8rRKEIxST-fDcb_Q_1Bf1JHJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638312960</pqid></control><display><type>article</type><title>A second-order low-regularity integrator for the nonlinear Schrödinger equation</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ostermann, Alexander ; Wu, Yifei ; Yao, Fangyan</creator><creatorcontrib>Ostermann, Alexander ; Wu, Yifei ; Yao, Fangyan</creatorcontrib><description>In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the
d
dimensional torus
T
d
. The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76,
2022
). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in
H
γ
(
T
d
)
for initial data in
H
γ
+
2
(
T
d
)
for any
γ
>
d
/
2
. This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986,
2019
).
The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work.</description><identifier>ISSN: 2731-4235</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 2731-4235</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-022-03695-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Analysis ; Approximation ; Difference and Functional Equations ; Error analysis ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Methods ; Ordinary Differential Equations ; Partial Differential Equations ; Schrodinger equation ; Toruses</subject><ispartof>Advances in continuous and discrete models, 2022-03, Vol.2022 (1), Article 23</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8484028a38b5ddefc075efbe3410430b236e2748d24d12cdc552259dd102443e3</citedby><cites>FETCH-LOGICAL-c363t-8484028a38b5ddefc075efbe3410430b236e2748d24d12cdc552259dd102443e3</cites><orcidid>0000-0003-0194-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s13662-022-03695-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1186/s13662-022-03695-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Ostermann, Alexander</creatorcontrib><creatorcontrib>Wu, Yifei</creatorcontrib><creatorcontrib>Yao, Fangyan</creatorcontrib><title>A second-order low-regularity integrator for the nonlinear Schrödinger equation</title><title>Advances in continuous and discrete models</title><addtitle>Adv Cont Discr Mod</addtitle><description>In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the
d
dimensional torus
T
d
. The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76,
2022
). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in
H
γ
(
T
d
)
for initial data in
H
γ
+
2
(
T
d
)
for any
γ
>
d
/
2
. This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986,
2019
).
The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Difference and Functional Equations</subject><subject>Error analysis</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Schrodinger equation</subject><subject>Toruses</subject><issn>2731-4235</issn><issn>1687-1839</issn><issn>2731-4235</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhYMoWLQv4GrAdTS5N5PJLEvxDwoK6jpMJ5l2ypi0yQzSF_MFfDFTR9CVi8O9i_Odyz2EXHB2xbmS15GjlEAZJKEsc6qOyAQK5FQA5sd_9lMyjXHDGIMSsGBqQp5mWbS1d4b6YGzIOv9Og10NXRXafp-1rrerUPU-ZE1Sv7aZ865rna1C9lyvw-eHad0qgXY3VH3r3Tk5aaou2unPPCOvtzcv83u6eLx7mM8WtEaJPVVCCQaqQrXMjbFNzYrcNkuLgjOBbAkoLRRCGRCGQ23qPAfIS2M4AyHQ4hm5HHO3we8GG3u98UNw6aQGiQo5lJIlF4yuOvgYg230NrRvVdhrzvShPD2Wp1N5-rs8rRKEIxST-fDcb_Q_1Bf1JHJQ</recordid><startdate>20220312</startdate><enddate>20220312</enddate><creator>Ostermann, Alexander</creator><creator>Wu, Yifei</creator><creator>Yao, Fangyan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid></search><sort><creationdate>20220312</creationdate><title>A second-order low-regularity integrator for the nonlinear Schrödinger equation</title><author>Ostermann, Alexander ; Wu, Yifei ; Yao, Fangyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8484028a38b5ddefc075efbe3410430b236e2748d24d12cdc552259dd102443e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Difference and Functional Equations</topic><topic>Error analysis</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Schrodinger equation</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostermann, Alexander</creatorcontrib><creatorcontrib>Wu, Yifei</creatorcontrib><creatorcontrib>Yao, Fangyan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in continuous and discrete models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostermann, Alexander</au><au>Wu, Yifei</au><au>Yao, Fangyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second-order low-regularity integrator for the nonlinear Schrödinger equation</atitle><jtitle>Advances in continuous and discrete models</jtitle><stitle>Adv Cont Discr Mod</stitle><date>2022-03-12</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><artnum>23</artnum><issn>2731-4235</issn><issn>1687-1839</issn><eissn>2731-4235</eissn><eissn>1687-1847</eissn><abstract>In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the
d
dimensional torus
T
d
. The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76,
2022
). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in
H
γ
(
T
d
)
for initial data in
H
γ
+
2
(
T
d
)
for any
γ
>
d
/
2
. This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986,
2019
).
The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-022-03695-8</doi><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-4235 |
ispartof | Advances in continuous and discrete models, 2022-03, Vol.2022 (1), Article 23 |
issn | 2731-4235 1687-1839 2731-4235 1687-1847 |
language | eng |
recordid | cdi_proquest_journals_2638312960 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Accuracy Analysis Approximation Difference and Functional Equations Error analysis Functional Analysis Mathematics Mathematics and Statistics Methods Ordinary Differential Equations Partial Differential Equations Schrodinger equation Toruses |
title | A second-order low-regularity integrator for the nonlinear Schrödinger equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second-order%20low-regularity%20integrator%20for%20the%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=Advances%20in%20continuous%20and%20discrete%20models&rft.au=Ostermann,%20Alexander&rft.date=2022-03-12&rft.volume=2022&rft.issue=1&rft.artnum=23&rft.issn=2731-4235&rft.eissn=2731-4235&rft_id=info:doi/10.1186/s13662-022-03695-8&rft_dat=%3Cproquest_cross%3E2638312960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638312960&rft_id=info:pmid/&rfr_iscdi=true |