A second-order low-regularity integrator for the nonlinear Schrödinger equation

In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the d dimensional torus T d . The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76, 2022 ). It is explicit and efficient to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in continuous and discrete models 2022-03, Vol.2022 (1), Article 23
Hauptverfasser: Ostermann, Alexander, Wu, Yifei, Yao, Fangyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Advances in continuous and discrete models
container_volume 2022
creator Ostermann, Alexander
Wu, Yifei
Yao, Fangyan
description In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the d dimensional torus T d . The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76, 2022 ). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in H γ ( T d ) for initial data in H γ + 2 ( T d ) for any γ > d / 2 . This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986, 2019 ). The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work.
doi_str_mv 10.1186/s13662-022-03695-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638312960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638312960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8484028a38b5ddefc075efbe3410430b236e2748d24d12cdc552259dd102443e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWLQv4GrAdTS5N5PJLEvxDwoK6jpMJ5l2ypi0yQzSF_MFfDFTR9CVi8O9i_Odyz2EXHB2xbmS15GjlEAZJKEsc6qOyAQK5FQA5sd_9lMyjXHDGIMSsGBqQp5mWbS1d4b6YGzIOv9Og10NXRXafp-1rrerUPU-ZE1Sv7aZ865rna1C9lyvw-eHad0qgXY3VH3r3Tk5aaou2unPPCOvtzcv83u6eLx7mM8WtEaJPVVCCQaqQrXMjbFNzYrcNkuLgjOBbAkoLRRCGRCGQ23qPAfIS2M4AyHQ4hm5HHO3we8GG3u98UNw6aQGiQo5lJIlF4yuOvgYg230NrRvVdhrzvShPD2Wp1N5-rs8rRKEIxST-fDcb_Q_1Bf1JHJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638312960</pqid></control><display><type>article</type><title>A second-order low-regularity integrator for the nonlinear Schrödinger equation</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ostermann, Alexander ; Wu, Yifei ; Yao, Fangyan</creator><creatorcontrib>Ostermann, Alexander ; Wu, Yifei ; Yao, Fangyan</creatorcontrib><description>In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the d dimensional torus T d . The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76, 2022 ). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in H γ ( T d ) for initial data in H γ + 2 ( T d ) for any γ &gt; d / 2 . This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986, 2019 ). The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work.</description><identifier>ISSN: 2731-4235</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 2731-4235</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-022-03695-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Analysis ; Approximation ; Difference and Functional Equations ; Error analysis ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Methods ; Ordinary Differential Equations ; Partial Differential Equations ; Schrodinger equation ; Toruses</subject><ispartof>Advances in continuous and discrete models, 2022-03, Vol.2022 (1), Article 23</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8484028a38b5ddefc075efbe3410430b236e2748d24d12cdc552259dd102443e3</citedby><cites>FETCH-LOGICAL-c363t-8484028a38b5ddefc075efbe3410430b236e2748d24d12cdc552259dd102443e3</cites><orcidid>0000-0003-0194-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s13662-022-03695-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1186/s13662-022-03695-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Ostermann, Alexander</creatorcontrib><creatorcontrib>Wu, Yifei</creatorcontrib><creatorcontrib>Yao, Fangyan</creatorcontrib><title>A second-order low-regularity integrator for the nonlinear Schrödinger equation</title><title>Advances in continuous and discrete models</title><addtitle>Adv Cont Discr Mod</addtitle><description>In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the d dimensional torus T d . The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76, 2022 ). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in H γ ( T d ) for initial data in H γ + 2 ( T d ) for any γ &gt; d / 2 . This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986, 2019 ). The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Difference and Functional Equations</subject><subject>Error analysis</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Schrodinger equation</subject><subject>Toruses</subject><issn>2731-4235</issn><issn>1687-1839</issn><issn>2731-4235</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhYMoWLQv4GrAdTS5N5PJLEvxDwoK6jpMJ5l2ypi0yQzSF_MFfDFTR9CVi8O9i_Odyz2EXHB2xbmS15GjlEAZJKEsc6qOyAQK5FQA5sd_9lMyjXHDGIMSsGBqQp5mWbS1d4b6YGzIOv9Og10NXRXafp-1rrerUPU-ZE1Sv7aZ865rna1C9lyvw-eHad0qgXY3VH3r3Tk5aaou2unPPCOvtzcv83u6eLx7mM8WtEaJPVVCCQaqQrXMjbFNzYrcNkuLgjOBbAkoLRRCGRCGQ23qPAfIS2M4AyHQ4hm5HHO3we8GG3u98UNw6aQGiQo5lJIlF4yuOvgYg230NrRvVdhrzvShPD2Wp1N5-rs8rRKEIxST-fDcb_Q_1Bf1JHJQ</recordid><startdate>20220312</startdate><enddate>20220312</enddate><creator>Ostermann, Alexander</creator><creator>Wu, Yifei</creator><creator>Yao, Fangyan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid></search><sort><creationdate>20220312</creationdate><title>A second-order low-regularity integrator for the nonlinear Schrödinger equation</title><author>Ostermann, Alexander ; Wu, Yifei ; Yao, Fangyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8484028a38b5ddefc075efbe3410430b236e2748d24d12cdc552259dd102443e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Difference and Functional Equations</topic><topic>Error analysis</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Schrodinger equation</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostermann, Alexander</creatorcontrib><creatorcontrib>Wu, Yifei</creatorcontrib><creatorcontrib>Yao, Fangyan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in continuous and discrete models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostermann, Alexander</au><au>Wu, Yifei</au><au>Yao, Fangyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second-order low-regularity integrator for the nonlinear Schrödinger equation</atitle><jtitle>Advances in continuous and discrete models</jtitle><stitle>Adv Cont Discr Mod</stitle><date>2022-03-12</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><artnum>23</artnum><issn>2731-4235</issn><issn>1687-1839</issn><eissn>2731-4235</eissn><eissn>1687-1847</eissn><abstract>In this paper, we analyze a new exponential-type integrator for the nonlinear cubic Schrödinger equation on the d dimensional torus T d . The scheme has also been derived recently in a wider context of decorated trees (Bruned et al. in Forum Math. Pi 10:1–76, 2022 ). It is explicit and efficient to implement. Here, we present an alternative derivation and give a rigorous error analysis. In particular, we prove the second-order convergence in H γ ( T d ) for initial data in H γ + 2 ( T d ) for any γ &gt; d / 2 . This improves the previous work (Knöller et al. in SIAM J. Numer. Anal. 57:1967–1986, 2019 ). The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-022-03695-8</doi><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2731-4235
ispartof Advances in continuous and discrete models, 2022-03, Vol.2022 (1), Article 23
issn 2731-4235
1687-1839
2731-4235
1687-1847
language eng
recordid cdi_proquest_journals_2638312960
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Accuracy
Analysis
Approximation
Difference and Functional Equations
Error analysis
Functional Analysis
Mathematics
Mathematics and Statistics
Methods
Ordinary Differential Equations
Partial Differential Equations
Schrodinger equation
Toruses
title A second-order low-regularity integrator for the nonlinear Schrödinger equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second-order%20low-regularity%20integrator%20for%20the%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=Advances%20in%20continuous%20and%20discrete%20models&rft.au=Ostermann,%20Alexander&rft.date=2022-03-12&rft.volume=2022&rft.issue=1&rft.artnum=23&rft.issn=2731-4235&rft.eissn=2731-4235&rft_id=info:doi/10.1186/s13662-022-03695-8&rft_dat=%3Cproquest_cross%3E2638312960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638312960&rft_id=info:pmid/&rfr_iscdi=true