Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation

Flutter instability because of the blade vibrations is a major problem in axial compressor cascades. This paper investigates the effects of blade oscillations on aerodynamic performance and turbulent flow characteristics of modern gas-turbine compressors. Highly accurate direct numerical simulations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2022-03, Vol.242, p.122988, Article 122988
Hauptverfasser: Nakhchi, M.E., Naung, S. Win, Rahmati, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122988
container_title Energy (Oxford)
container_volume 242
creator Nakhchi, M.E.
Naung, S. Win
Rahmati, M.
description Flutter instability because of the blade vibrations is a major problem in axial compressor cascades. This paper investigates the effects of blade oscillations on aerodynamic performance and turbulent flow characteristics of modern gas-turbine compressors. Highly accurate direct numerical simulations (DNS) are performed based on the spectral-hp element method to predict the flow instabilities, pressure fluctuations and vortex generation on the surface of the compressor blades by considering all complex physical parameters at different vibration frequencies (0 
doi_str_mv 10.1016/j.energy.2021.122988
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638291264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544221032370</els_id><sourcerecordid>2638291264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-62a1a089e0f62f17f557b6528146bd889f5bde37cb9cce40d16bef08893491173</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz12TtE1TD4L4DYIXPYc0nSxZ2mSdtOL-e7t2z57mMM_7DvMQcsnZijMurzcrCIDr3UowwVdciFqpI7LgqsozWanymCxYLllWFoU4JWcpbRhjparrBfl5Da4bIVig0dGmMy3Qb9-gGXwMicZADWBsd8H03tItoIvYmwNufrzpqI39FiGliNQHujaJDiM2PsANffAIdqBh7AG9ndjk-7H76z4nJ850CS4Oc0k-nx4_7l-yt_fn1_u7t8zmig2ZFIYbpmpgTgrHK1eWVSNLoXghm1ap2pVNC3llm9paKFjLZQOOTYu8qDmv8iW5mnu3GL9GSIPexBHDdFILmStRcyGLiSpmymJMCcHpLfre4E5zpveO9UbPjvXesZ4dT7HbOQbTB98eUCfr9zLbv8d1G_3_Bb8ubojl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638291264</pqid></control><display><type>article</type><title>Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation</title><source>Elsevier ScienceDirect Journals</source><creator>Nakhchi, M.E. ; Naung, S. Win ; Rahmati, M.</creator><creatorcontrib>Nakhchi, M.E. ; Naung, S. Win ; Rahmati, M.</creatorcontrib><description>Flutter instability because of the blade vibrations is a major problem in axial compressor cascades. This paper investigates the effects of blade oscillations on aerodynamic performance and turbulent flow characteristics of modern gas-turbine compressors. Highly accurate direct numerical simulations (DNS) are performed based on the spectral-hp element method to predict the flow instabilities, pressure fluctuations and vortex generation on the surface of the compressor blades by considering all complex physical parameters at different vibration frequencies (0 &lt; f &lt; 8.28 Hz). The main novelty of this study is to consider the aeroelastic vibrations of the compressor blades in DNS analysis. The novel proposed method enables the detailed analysis of complex structure fluid interactions, which cannot be obtained using other methods such as RANS models. The simulations revealed that the blade oscillations have a huge impact on the vortex generation and laminar separation bubble on the suction side of the blade. Moreover, the amplitude of unsteady pressure distribution is greater at 90% span, with the phage angle deviating between 100° and 350°. Strong fluctuations are observed at the centre of the wake region of the vibrating blade cascade. These fluctuations are activated by the flow disturbances resulting from the blade oscillation. Moreover, intense pressure fluctuations happen in the wake region of the oscillating compressor blade compared with the stationary one. The separating point occurred 8.28% sooner on the suction surface of the vibrating blade with k = 0.4 (Xsep/C = 0.288) compared to the stationary blade with Xsep/C = 0.314. •The vibration effects on flow structure over axial compressor blades are studied.•Separation occurred 8.28% faster over vibrating blade compared to stationary one.•Oscillations have huge impact on vortex generation and LSB in compressor cascade.•Strong pressure fluctuations are observed in the wake region of vibrating blade.•Additional flow disturbance is detected due to higher vibration frequencies.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.122988</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerodynamics ; Blade oscillations ; Compressor ; Compressor blades ; Direct numerical simulation ; DNS ; Flow characteristics ; Fluctuations ; Fluid flow ; Flutter ; Gas turbines ; Mathematical models ; Oscillations ; Phages ; Physical properties ; Pressure ; Pressure distribution ; Simulation ; Spectral-hp element ; Suction ; Transient flow ; Turbines ; Turbocompressors ; Turbulent flow ; Vibration ; Vibrations</subject><ispartof>Energy (Oxford), 2022-03, Vol.242, p.122988, Article 122988</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV Mar 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-62a1a089e0f62f17f557b6528146bd889f5bde37cb9cce40d16bef08893491173</citedby><cites>FETCH-LOGICAL-c380t-62a1a089e0f62f17f557b6528146bd889f5bde37cb9cce40d16bef08893491173</cites><orcidid>0000-0003-4903-5370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544221032370$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nakhchi, M.E.</creatorcontrib><creatorcontrib>Naung, S. Win</creatorcontrib><creatorcontrib>Rahmati, M.</creatorcontrib><title>Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation</title><title>Energy (Oxford)</title><description>Flutter instability because of the blade vibrations is a major problem in axial compressor cascades. This paper investigates the effects of blade oscillations on aerodynamic performance and turbulent flow characteristics of modern gas-turbine compressors. Highly accurate direct numerical simulations (DNS) are performed based on the spectral-hp element method to predict the flow instabilities, pressure fluctuations and vortex generation on the surface of the compressor blades by considering all complex physical parameters at different vibration frequencies (0 &lt; f &lt; 8.28 Hz). The main novelty of this study is to consider the aeroelastic vibrations of the compressor blades in DNS analysis. The novel proposed method enables the detailed analysis of complex structure fluid interactions, which cannot be obtained using other methods such as RANS models. The simulations revealed that the blade oscillations have a huge impact on the vortex generation and laminar separation bubble on the suction side of the blade. Moreover, the amplitude of unsteady pressure distribution is greater at 90% span, with the phage angle deviating between 100° and 350°. Strong fluctuations are observed at the centre of the wake region of the vibrating blade cascade. These fluctuations are activated by the flow disturbances resulting from the blade oscillation. Moreover, intense pressure fluctuations happen in the wake region of the oscillating compressor blade compared with the stationary one. The separating point occurred 8.28% sooner on the suction surface of the vibrating blade with k = 0.4 (Xsep/C = 0.288) compared to the stationary blade with Xsep/C = 0.314. •The vibration effects on flow structure over axial compressor blades are studied.•Separation occurred 8.28% faster over vibrating blade compared to stationary one.•Oscillations have huge impact on vortex generation and LSB in compressor cascade.•Strong pressure fluctuations are observed in the wake region of vibrating blade.•Additional flow disturbance is detected due to higher vibration frequencies.</description><subject>Aerodynamics</subject><subject>Blade oscillations</subject><subject>Compressor</subject><subject>Compressor blades</subject><subject>Direct numerical simulation</subject><subject>DNS</subject><subject>Flow characteristics</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Flutter</subject><subject>Gas turbines</subject><subject>Mathematical models</subject><subject>Oscillations</subject><subject>Phages</subject><subject>Physical properties</subject><subject>Pressure</subject><subject>Pressure distribution</subject><subject>Simulation</subject><subject>Spectral-hp element</subject><subject>Suction</subject><subject>Transient flow</subject><subject>Turbines</subject><subject>Turbocompressors</subject><subject>Turbulent flow</subject><subject>Vibration</subject><subject>Vibrations</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz12TtE1TD4L4DYIXPYc0nSxZ2mSdtOL-e7t2z57mMM_7DvMQcsnZijMurzcrCIDr3UowwVdciFqpI7LgqsozWanymCxYLllWFoU4JWcpbRhjparrBfl5Da4bIVig0dGmMy3Qb9-gGXwMicZADWBsd8H03tItoIvYmwNufrzpqI39FiGliNQHujaJDiM2PsANffAIdqBh7AG9ndjk-7H76z4nJ850CS4Oc0k-nx4_7l-yt_fn1_u7t8zmig2ZFIYbpmpgTgrHK1eWVSNLoXghm1ap2pVNC3llm9paKFjLZQOOTYu8qDmv8iW5mnu3GL9GSIPexBHDdFILmStRcyGLiSpmymJMCcHpLfre4E5zpveO9UbPjvXesZ4dT7HbOQbTB98eUCfr9zLbv8d1G_3_Bb8ubojl</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Nakhchi, M.E.</creator><creator>Naung, S. Win</creator><creator>Rahmati, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4903-5370</orcidid></search><sort><creationdate>20220301</creationdate><title>Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation</title><author>Nakhchi, M.E. ; Naung, S. Win ; Rahmati, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-62a1a089e0f62f17f557b6528146bd889f5bde37cb9cce40d16bef08893491173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerodynamics</topic><topic>Blade oscillations</topic><topic>Compressor</topic><topic>Compressor blades</topic><topic>Direct numerical simulation</topic><topic>DNS</topic><topic>Flow characteristics</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Flutter</topic><topic>Gas turbines</topic><topic>Mathematical models</topic><topic>Oscillations</topic><topic>Phages</topic><topic>Physical properties</topic><topic>Pressure</topic><topic>Pressure distribution</topic><topic>Simulation</topic><topic>Spectral-hp element</topic><topic>Suction</topic><topic>Transient flow</topic><topic>Turbines</topic><topic>Turbocompressors</topic><topic>Turbulent flow</topic><topic>Vibration</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakhchi, M.E.</creatorcontrib><creatorcontrib>Naung, S. Win</creatorcontrib><creatorcontrib>Rahmati, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakhchi, M.E.</au><au>Naung, S. Win</au><au>Rahmati, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation</atitle><jtitle>Energy (Oxford)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>242</volume><spage>122988</spage><pages>122988-</pages><artnum>122988</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Flutter instability because of the blade vibrations is a major problem in axial compressor cascades. This paper investigates the effects of blade oscillations on aerodynamic performance and turbulent flow characteristics of modern gas-turbine compressors. Highly accurate direct numerical simulations (DNS) are performed based on the spectral-hp element method to predict the flow instabilities, pressure fluctuations and vortex generation on the surface of the compressor blades by considering all complex physical parameters at different vibration frequencies (0 &lt; f &lt; 8.28 Hz). The main novelty of this study is to consider the aeroelastic vibrations of the compressor blades in DNS analysis. The novel proposed method enables the detailed analysis of complex structure fluid interactions, which cannot be obtained using other methods such as RANS models. The simulations revealed that the blade oscillations have a huge impact on the vortex generation and laminar separation bubble on the suction side of the blade. Moreover, the amplitude of unsteady pressure distribution is greater at 90% span, with the phage angle deviating between 100° and 350°. Strong fluctuations are observed at the centre of the wake region of the vibrating blade cascade. These fluctuations are activated by the flow disturbances resulting from the blade oscillation. Moreover, intense pressure fluctuations happen in the wake region of the oscillating compressor blade compared with the stationary one. The separating point occurred 8.28% sooner on the suction surface of the vibrating blade with k = 0.4 (Xsep/C = 0.288) compared to the stationary blade with Xsep/C = 0.314. •The vibration effects on flow structure over axial compressor blades are studied.•Separation occurred 8.28% faster over vibrating blade compared to stationary one.•Oscillations have huge impact on vortex generation and LSB in compressor cascade.•Strong pressure fluctuations are observed in the wake region of vibrating blade.•Additional flow disturbance is detected due to higher vibration frequencies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.122988</doi><orcidid>https://orcid.org/0000-0003-4903-5370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2022-03, Vol.242, p.122988, Article 122988
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2638291264
source Elsevier ScienceDirect Journals
subjects Aerodynamics
Blade oscillations
Compressor
Compressor blades
Direct numerical simulation
DNS
Flow characteristics
Fluctuations
Fluid flow
Flutter
Gas turbines
Mathematical models
Oscillations
Phages
Physical properties
Pressure
Pressure distribution
Simulation
Spectral-hp element
Suction
Transient flow
Turbines
Turbocompressors
Turbulent flow
Vibration
Vibrations
title Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20blade%20vibrations%20on%20aerodynamic%20performance%20of%20axial%20compressor%20in%20gas%20turbine:%20Direct%20numerical%20simulation&rft.jtitle=Energy%20(Oxford)&rft.au=Nakhchi,%20M.E.&rft.date=2022-03-01&rft.volume=242&rft.spage=122988&rft.pages=122988-&rft.artnum=122988&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.122988&rft_dat=%3Cproquest_cross%3E2638291264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638291264&rft_id=info:pmid/&rft_els_id=S0360544221032370&rfr_iscdi=true