A facile bottom-up strategy based on combustion-reduction toward monolithic micron/nanoporous nickel: An efficient electrode material for hydrogen evolution reaction and supercapacitor
•A monolithic micron-nano porous nickel was created via a bottom-up strategy.•The pore-enriched Ni powders are achieved via a combustion-reduction approach.•The designed MNPN can serve as a high-performance electrode for HER.•The MNPN is used as an efficient current collector for supercapacitor elec...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2022-03, Vol.407, p.139922, Article 139922 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 139922 |
container_title | Electrochimica acta |
container_volume | 407 |
creator | Wang, Shuo Wang, Zhihong Yan, Ruigang Guo, Yingshuang Chen, Honglei Lü, Weiming Zhang, Yaohui Liu, Zhiguo Lü, Zhe |
description | •A monolithic micron-nano porous nickel was created via a bottom-up strategy.•The pore-enriched Ni powders are achieved via a combustion-reduction approach.•The designed MNPN can serve as a high-performance electrode for HER.•The MNPN is used as an efficient current collector for supercapacitor electrodes.
Micron/nanoporous metals are of great importance in catalysis, sensor, and energy technologies. However, their practical application is limited because the existing fabrication approaches mainly depend on the top-down strategy, such as dealloying and template methods, which often require an introduction of sacrificial materials and an elaborate process. Herein, the Ni powders with a unique micron/nanoporous structure are achieved via a direct decomposition and reduction of NiNO3 precursor in the combustion flame. The prepared powders are applied to form monolithic micron/nanoporous nickel (MNPN) through a simple dry-press and heating treatment. The designed MNPN can serve as a robust self-supporting electrode for hydrogen evolution reaction, exhibiting a high catalytic activity with the current density of 10 mA cm−2 at overpotentials of 63 mV in 1.0 M KOH and 89 mV in 1.0 M phosphate buffer solution (PBS). Furthermore, the MNPN is also used as an efficient current collector for MNPN-MnO2 supercapacitor electrodes. The MNPN-MnO2 electrodes show a high specific capacitance of 970 F g−1 at 2 mV s−1 and outstanding electrochemical stability with retention of 103.6% after 10,000 cycles. Importantly, the work offers a reliable avenue to develop monolithic micron/nano-scale porous metals for a wide range of applications.
[Display omitted] |
doi_str_mv | 10.1016/j.electacta.2022.139922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638291149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468622000949</els_id><sourcerecordid>2638291149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-72c53c43bfb77f250403c852767e1818f3f25fb478e46dc1624a93d83ce1f05c3</originalsourceid><addsrcrecordid>eNqFUdtqHDEMHUoL3ab9hhr6PBtf5tq3JfQGgby0z8Zjy4m3M9ZU9qTsn_Xz6s2WvBYEEuJI50inqt4LvhdcdNfHPcxgsymxl1zKvVDjKOWLaieGXtVqaMeX1Y5zoeqmG7rX1ZuUjpzzvuv5rvpzYN7YMAObMGdc6m1lKZPJcH9ik0ngGEZmcZm2lAPGmsBt9lyxjL8NObZgxDnkh2DZEixhvI4m4oqEW2Ix2J8wf2SHyMD7YAPEzJ70EjpgS-GhYGbmkdjDyRHeQ0E-4rw9URCYC5eJjqVtBbJmLXIz0tvqlTdzgnf_8lX14_On7zdf69u7L99uDre1VY3KdS9tq2yjJj_1vZctb7iyQyvL9SAGMXhVmn5q-gGazlnRycaMyg3KgvC8teqq-nDZuxL-2iBlfcSNYqHUslODHIVoxoLqL6jygJQIvF4pLIZOWnB9tkkf9bNN-myTvthUJg-XSShHPAYgnc5fsuACFbx2GP674y_-daUR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638291149</pqid></control><display><type>article</type><title>A facile bottom-up strategy based on combustion-reduction toward monolithic micron/nanoporous nickel: An efficient electrode material for hydrogen evolution reaction and supercapacitor</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Shuo ; Wang, Zhihong ; Yan, Ruigang ; Guo, Yingshuang ; Chen, Honglei ; Lü, Weiming ; Zhang, Yaohui ; Liu, Zhiguo ; Lü, Zhe</creator><creatorcontrib>Wang, Shuo ; Wang, Zhihong ; Yan, Ruigang ; Guo, Yingshuang ; Chen, Honglei ; Lü, Weiming ; Zhang, Yaohui ; Liu, Zhiguo ; Lü, Zhe</creatorcontrib><description>•A monolithic micron-nano porous nickel was created via a bottom-up strategy.•The pore-enriched Ni powders are achieved via a combustion-reduction approach.•The designed MNPN can serve as a high-performance electrode for HER.•The MNPN is used as an efficient current collector for supercapacitor electrodes.
Micron/nanoporous metals are of great importance in catalysis, sensor, and energy technologies. However, their practical application is limited because the existing fabrication approaches mainly depend on the top-down strategy, such as dealloying and template methods, which often require an introduction of sacrificial materials and an elaborate process. Herein, the Ni powders with a unique micron/nanoporous structure are achieved via a direct decomposition and reduction of NiNO3 precursor in the combustion flame. The prepared powders are applied to form monolithic micron/nanoporous nickel (MNPN) through a simple dry-press and heating treatment. The designed MNPN can serve as a robust self-supporting electrode for hydrogen evolution reaction, exhibiting a high catalytic activity with the current density of 10 mA cm−2 at overpotentials of 63 mV in 1.0 M KOH and 89 mV in 1.0 M phosphate buffer solution (PBS). Furthermore, the MNPN is also used as an efficient current collector for MNPN-MnO2 supercapacitor electrodes. The MNPN-MnO2 electrodes show a high specific capacitance of 970 F g−1 at 2 mV s−1 and outstanding electrochemical stability with retention of 103.6% after 10,000 cycles. Importantly, the work offers a reliable avenue to develop monolithic micron/nano-scale porous metals for a wide range of applications.
[Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2022.139922</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bottom-up method ; Buffer solutions ; Catalysis ; Catalytic activity ; Combustion ; Combustion-reduction ; Electrode materials ; Energy technology ; Hydrogen evolution reaction ; Hydrogen evolution reactions ; Manganese dioxide ; Micron/nanoporous metals ; Nickel ; Porous metals ; Supercapacitor ; Supercapacitors</subject><ispartof>Electrochimica acta, 2022-03, Vol.407, p.139922, Article 139922</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Mar 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-72c53c43bfb77f250403c852767e1818f3f25fb478e46dc1624a93d83ce1f05c3</citedby><cites>FETCH-LOGICAL-c343t-72c53c43bfb77f250403c852767e1818f3f25fb478e46dc1624a93d83ce1f05c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2022.139922$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Wang, Zhihong</creatorcontrib><creatorcontrib>Yan, Ruigang</creatorcontrib><creatorcontrib>Guo, Yingshuang</creatorcontrib><creatorcontrib>Chen, Honglei</creatorcontrib><creatorcontrib>Lü, Weiming</creatorcontrib><creatorcontrib>Zhang, Yaohui</creatorcontrib><creatorcontrib>Liu, Zhiguo</creatorcontrib><creatorcontrib>Lü, Zhe</creatorcontrib><title>A facile bottom-up strategy based on combustion-reduction toward monolithic micron/nanoporous nickel: An efficient electrode material for hydrogen evolution reaction and supercapacitor</title><title>Electrochimica acta</title><description>•A monolithic micron-nano porous nickel was created via a bottom-up strategy.•The pore-enriched Ni powders are achieved via a combustion-reduction approach.•The designed MNPN can serve as a high-performance electrode for HER.•The MNPN is used as an efficient current collector for supercapacitor electrodes.
Micron/nanoporous metals are of great importance in catalysis, sensor, and energy technologies. However, their practical application is limited because the existing fabrication approaches mainly depend on the top-down strategy, such as dealloying and template methods, which often require an introduction of sacrificial materials and an elaborate process. Herein, the Ni powders with a unique micron/nanoporous structure are achieved via a direct decomposition and reduction of NiNO3 precursor in the combustion flame. The prepared powders are applied to form monolithic micron/nanoporous nickel (MNPN) through a simple dry-press and heating treatment. The designed MNPN can serve as a robust self-supporting electrode for hydrogen evolution reaction, exhibiting a high catalytic activity with the current density of 10 mA cm−2 at overpotentials of 63 mV in 1.0 M KOH and 89 mV in 1.0 M phosphate buffer solution (PBS). Furthermore, the MNPN is also used as an efficient current collector for MNPN-MnO2 supercapacitor electrodes. The MNPN-MnO2 electrodes show a high specific capacitance of 970 F g−1 at 2 mV s−1 and outstanding electrochemical stability with retention of 103.6% after 10,000 cycles. Importantly, the work offers a reliable avenue to develop monolithic micron/nano-scale porous metals for a wide range of applications.
[Display omitted]</description><subject>Bottom-up method</subject><subject>Buffer solutions</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Combustion</subject><subject>Combustion-reduction</subject><subject>Electrode materials</subject><subject>Energy technology</subject><subject>Hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Manganese dioxide</subject><subject>Micron/nanoporous metals</subject><subject>Nickel</subject><subject>Porous metals</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUdtqHDEMHUoL3ab9hhr6PBtf5tq3JfQGgby0z8Zjy4m3M9ZU9qTsn_Xz6s2WvBYEEuJI50inqt4LvhdcdNfHPcxgsymxl1zKvVDjKOWLaieGXtVqaMeX1Y5zoeqmG7rX1ZuUjpzzvuv5rvpzYN7YMAObMGdc6m1lKZPJcH9ik0ngGEZmcZm2lAPGmsBt9lyxjL8NObZgxDnkh2DZEixhvI4m4oqEW2Ix2J8wf2SHyMD7YAPEzJ70EjpgS-GhYGbmkdjDyRHeQ0E-4rw9URCYC5eJjqVtBbJmLXIz0tvqlTdzgnf_8lX14_On7zdf69u7L99uDre1VY3KdS9tq2yjJj_1vZctb7iyQyvL9SAGMXhVmn5q-gGazlnRycaMyg3KgvC8teqq-nDZuxL-2iBlfcSNYqHUslODHIVoxoLqL6jygJQIvF4pLIZOWnB9tkkf9bNN-myTvthUJg-XSShHPAYgnc5fsuACFbx2GP674y_-daUR</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wang, Shuo</creator><creator>Wang, Zhihong</creator><creator>Yan, Ruigang</creator><creator>Guo, Yingshuang</creator><creator>Chen, Honglei</creator><creator>Lü, Weiming</creator><creator>Zhang, Yaohui</creator><creator>Liu, Zhiguo</creator><creator>Lü, Zhe</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220301</creationdate><title>A facile bottom-up strategy based on combustion-reduction toward monolithic micron/nanoporous nickel: An efficient electrode material for hydrogen evolution reaction and supercapacitor</title><author>Wang, Shuo ; Wang, Zhihong ; Yan, Ruigang ; Guo, Yingshuang ; Chen, Honglei ; Lü, Weiming ; Zhang, Yaohui ; Liu, Zhiguo ; Lü, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-72c53c43bfb77f250403c852767e1818f3f25fb478e46dc1624a93d83ce1f05c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bottom-up method</topic><topic>Buffer solutions</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Combustion</topic><topic>Combustion-reduction</topic><topic>Electrode materials</topic><topic>Energy technology</topic><topic>Hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Manganese dioxide</topic><topic>Micron/nanoporous metals</topic><topic>Nickel</topic><topic>Porous metals</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Wang, Zhihong</creatorcontrib><creatorcontrib>Yan, Ruigang</creatorcontrib><creatorcontrib>Guo, Yingshuang</creatorcontrib><creatorcontrib>Chen, Honglei</creatorcontrib><creatorcontrib>Lü, Weiming</creatorcontrib><creatorcontrib>Zhang, Yaohui</creatorcontrib><creatorcontrib>Liu, Zhiguo</creatorcontrib><creatorcontrib>Lü, Zhe</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuo</au><au>Wang, Zhihong</au><au>Yan, Ruigang</au><au>Guo, Yingshuang</au><au>Chen, Honglei</au><au>Lü, Weiming</au><au>Zhang, Yaohui</au><au>Liu, Zhiguo</au><au>Lü, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A facile bottom-up strategy based on combustion-reduction toward monolithic micron/nanoporous nickel: An efficient electrode material for hydrogen evolution reaction and supercapacitor</atitle><jtitle>Electrochimica acta</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>407</volume><spage>139922</spage><pages>139922-</pages><artnum>139922</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•A monolithic micron-nano porous nickel was created via a bottom-up strategy.•The pore-enriched Ni powders are achieved via a combustion-reduction approach.•The designed MNPN can serve as a high-performance electrode for HER.•The MNPN is used as an efficient current collector for supercapacitor electrodes.
Micron/nanoporous metals are of great importance in catalysis, sensor, and energy technologies. However, their practical application is limited because the existing fabrication approaches mainly depend on the top-down strategy, such as dealloying and template methods, which often require an introduction of sacrificial materials and an elaborate process. Herein, the Ni powders with a unique micron/nanoporous structure are achieved via a direct decomposition and reduction of NiNO3 precursor in the combustion flame. The prepared powders are applied to form monolithic micron/nanoporous nickel (MNPN) through a simple dry-press and heating treatment. The designed MNPN can serve as a robust self-supporting electrode for hydrogen evolution reaction, exhibiting a high catalytic activity with the current density of 10 mA cm−2 at overpotentials of 63 mV in 1.0 M KOH and 89 mV in 1.0 M phosphate buffer solution (PBS). Furthermore, the MNPN is also used as an efficient current collector for MNPN-MnO2 supercapacitor electrodes. The MNPN-MnO2 electrodes show a high specific capacitance of 970 F g−1 at 2 mV s−1 and outstanding electrochemical stability with retention of 103.6% after 10,000 cycles. Importantly, the work offers a reliable avenue to develop monolithic micron/nano-scale porous metals for a wide range of applications.
[Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2022.139922</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2022-03, Vol.407, p.139922, Article 139922 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2638291149 |
source | Elsevier ScienceDirect Journals |
subjects | Bottom-up method Buffer solutions Catalysis Catalytic activity Combustion Combustion-reduction Electrode materials Energy technology Hydrogen evolution reaction Hydrogen evolution reactions Manganese dioxide Micron/nanoporous metals Nickel Porous metals Supercapacitor Supercapacitors |
title | A facile bottom-up strategy based on combustion-reduction toward monolithic micron/nanoporous nickel: An efficient electrode material for hydrogen evolution reaction and supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20facile%20bottom-up%20strategy%20based%20on%20combustion-reduction%20toward%20monolithic%20micron/nanoporous%20nickel:%20An%20efficient%20electrode%20material%20for%20hydrogen%20evolution%20reaction%20and%20supercapacitor&rft.jtitle=Electrochimica%20acta&rft.au=Wang,%20Shuo&rft.date=2022-03-01&rft.volume=407&rft.spage=139922&rft.pages=139922-&rft.artnum=139922&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2022.139922&rft_dat=%3Cproquest_cross%3E2638291149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638291149&rft_id=info:pmid/&rft_els_id=S0013468622000949&rfr_iscdi=true |