Kinetic Modeling of the Post-consumer Poly(Ethylene Terephthalate) Hydrolysis Catalyzed by Cutinase from Humicola insolens
The search for a straightforward technology for post-consumer poly(ethylene terephthalate) (PC-PET) degradation is essential to develop a circular economy. In this context, PET hydrolases such as cutinases can be used as bioplatforms for this purpose. Humicola insolens cutinase (HiC) is a promising...
Gespeichert in:
Veröffentlicht in: | Journal of polymers and the environment 2022-04, Vol.30 (4), p.1627-1637 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1637 |
---|---|
container_issue | 4 |
container_start_page | 1627 |
container_title | Journal of polymers and the environment |
container_volume | 30 |
creator | Eugenio, Erika de Queiros Campisano, Ivone Sampaio Pereira de Castro, Aline Machado Coelho, Maria Alice Zarur Langone, Marta Antunes Pereira |
description | The search for a straightforward technology for post-consumer poly(ethylene terephthalate) (PC-PET) degradation is essential to develop a circular economy. In this context, PET hydrolases such as cutinases can be used as bioplatforms for this purpose.
Humicola insolens
cutinase (HiC) is a promising biocatalyst for PC-PET hydrolysis. Therefore, this work evaluated a kinetic model, and it was observed that the HiC seems not to be inhibited by any of the main PET hydrolysis products such as terephthalic acid (TPA), mono-(2-hydroxyethyl) terephthalate (MHET), and bis-(2-hydroxyethyl) terephthalate (BHET). The excellent fitting of the experimental data to a kinetic model based on enzyme-limiting conditions validates its employment for describing the enzymatic PC-PET hydrolysis using two-particle size ranges (0.075–0.250, and 0.250–0.600 mm) and temperatures (40, 50, 55, 60, 70, and 80 °C). The Arrhenius law provided a reliable parameter (activation energy of 98.9 ± 2.6 kJ mol
−1
) for enzymatic hydrolysis, which compares well with reported values for chemical PET hydrolysis. The thermodynamic parameters of PC-PET hydrolysis corresponded to activation enthalpy of 96.1 ± 3.6 kJ mol
−1
and activation entropy of 78.9 ± 9.5 J mol
−1
K
−1
. Thus, the observed rate enhancement with temperature was attributed to the enthalpic contribution, and this understanding is helpful to the comprehension of enzymatic behavior in hydrolysis reaction. |
doi_str_mv | 10.1007/s10924-021-02301-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638174991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638174991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-709153d6bf6b0c4aafbec1acc3c860458598df15c9da669124a94646f170769c3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsscAQsBPHiUdUFYoogqHMluPYjaskLrYzpL8elyCxMZzurHvfO-sBcI3RPUaoePAYsZQkKMWxMoQTcgJmOC_SpGSYnR5nSpM0J9k5uPB-hxBiEZyBw6vpVTASvtlatabfQqthaBT8sD4k0vZ-6JSLr3a8XYZmbFWv4EY5tW9CI1oR1B1cjbWLe288XIgg2vGgaliNcDEE0wuvoHa2g6uhM9K2Apre22jjL8GZFq1XV799Dj6flpvFKlm_P78sHteJzDALSRF_mmc1rTStkCRC6EpJLKTMZEkRycuclbXGuWS1oJThlAhGKKEaF6igTGZzcDP57p39GpQPfGcH18eTPKVZiQvCGI6qdFJJZ713SvO9M51wI8eIHzPmU8Y8Zsx_MuYkQtkE-Sjut8r9Wf9DfQOWKYB7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638174991</pqid></control><display><type>article</type><title>Kinetic Modeling of the Post-consumer Poly(Ethylene Terephthalate) Hydrolysis Catalyzed by Cutinase from Humicola insolens</title><source>SpringerNature Journals</source><creator>Eugenio, Erika de Queiros ; Campisano, Ivone Sampaio Pereira ; de Castro, Aline Machado ; Coelho, Maria Alice Zarur ; Langone, Marta Antunes Pereira</creator><creatorcontrib>Eugenio, Erika de Queiros ; Campisano, Ivone Sampaio Pereira ; de Castro, Aline Machado ; Coelho, Maria Alice Zarur ; Langone, Marta Antunes Pereira</creatorcontrib><description>The search for a straightforward technology for post-consumer poly(ethylene terephthalate) (PC-PET) degradation is essential to develop a circular economy. In this context, PET hydrolases such as cutinases can be used as bioplatforms for this purpose.
Humicola insolens
cutinase (HiC) is a promising biocatalyst for PC-PET hydrolysis. Therefore, this work evaluated a kinetic model, and it was observed that the HiC seems not to be inhibited by any of the main PET hydrolysis products such as terephthalic acid (TPA), mono-(2-hydroxyethyl) terephthalate (MHET), and bis-(2-hydroxyethyl) terephthalate (BHET). The excellent fitting of the experimental data to a kinetic model based on enzyme-limiting conditions validates its employment for describing the enzymatic PC-PET hydrolysis using two-particle size ranges (0.075–0.250, and 0.250–0.600 mm) and temperatures (40, 50, 55, 60, 70, and 80 °C). The Arrhenius law provided a reliable parameter (activation energy of 98.9 ± 2.6 kJ mol
−1
) for enzymatic hydrolysis, which compares well with reported values for chemical PET hydrolysis. The thermodynamic parameters of PC-PET hydrolysis corresponded to activation enthalpy of 96.1 ± 3.6 kJ mol
−1
and activation entropy of 78.9 ± 9.5 J mol
−1
K
−1
. Thus, the observed rate enhancement with temperature was attributed to the enthalpic contribution, and this understanding is helpful to the comprehension of enzymatic behavior in hydrolysis reaction.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-021-02301-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Activation energy ; Biocatalysts ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Circular economy ; Cutinase ; Employment ; Enthalpy ; Entropy ; Entropy of activation ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Enzymes ; Ethylene ; Fungi ; Humicola insolens ; Hydrolysis ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mathematical models ; Original Paper ; Parameters ; Polyethylene terephthalate ; Polymer Sciences ; Polymers ; Terephthalic acid</subject><ispartof>Journal of polymers and the environment, 2022-04, Vol.30 (4), p.1627-1637</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-709153d6bf6b0c4aafbec1acc3c860458598df15c9da669124a94646f170769c3</citedby><cites>FETCH-LOGICAL-c319t-709153d6bf6b0c4aafbec1acc3c860458598df15c9da669124a94646f170769c3</cites><orcidid>0000-0002-5489-9571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10924-021-02301-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10924-021-02301-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Eugenio, Erika de Queiros</creatorcontrib><creatorcontrib>Campisano, Ivone Sampaio Pereira</creatorcontrib><creatorcontrib>de Castro, Aline Machado</creatorcontrib><creatorcontrib>Coelho, Maria Alice Zarur</creatorcontrib><creatorcontrib>Langone, Marta Antunes Pereira</creatorcontrib><title>Kinetic Modeling of the Post-consumer Poly(Ethylene Terephthalate) Hydrolysis Catalyzed by Cutinase from Humicola insolens</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><description>The search for a straightforward technology for post-consumer poly(ethylene terephthalate) (PC-PET) degradation is essential to develop a circular economy. In this context, PET hydrolases such as cutinases can be used as bioplatforms for this purpose.
Humicola insolens
cutinase (HiC) is a promising biocatalyst for PC-PET hydrolysis. Therefore, this work evaluated a kinetic model, and it was observed that the HiC seems not to be inhibited by any of the main PET hydrolysis products such as terephthalic acid (TPA), mono-(2-hydroxyethyl) terephthalate (MHET), and bis-(2-hydroxyethyl) terephthalate (BHET). The excellent fitting of the experimental data to a kinetic model based on enzyme-limiting conditions validates its employment for describing the enzymatic PC-PET hydrolysis using two-particle size ranges (0.075–0.250, and 0.250–0.600 mm) and temperatures (40, 50, 55, 60, 70, and 80 °C). The Arrhenius law provided a reliable parameter (activation energy of 98.9 ± 2.6 kJ mol
−1
) for enzymatic hydrolysis, which compares well with reported values for chemical PET hydrolysis. The thermodynamic parameters of PC-PET hydrolysis corresponded to activation enthalpy of 96.1 ± 3.6 kJ mol
−1
and activation entropy of 78.9 ± 9.5 J mol
−1
K
−1
. Thus, the observed rate enhancement with temperature was attributed to the enthalpic contribution, and this understanding is helpful to the comprehension of enzymatic behavior in hydrolysis reaction.</description><subject>Acids</subject><subject>Activation energy</subject><subject>Biocatalysts</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Circular economy</subject><subject>Cutinase</subject><subject>Employment</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Entropy of activation</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Enzymes</subject><subject>Ethylene</subject><subject>Fungi</subject><subject>Humicola insolens</subject><subject>Hydrolysis</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Polyethylene terephthalate</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Terephthalic acid</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5gsscAQsBPHiUdUFYoogqHMluPYjaskLrYzpL8elyCxMZzurHvfO-sBcI3RPUaoePAYsZQkKMWxMoQTcgJmOC_SpGSYnR5nSpM0J9k5uPB-hxBiEZyBw6vpVTASvtlatabfQqthaBT8sD4k0vZ-6JSLr3a8XYZmbFWv4EY5tW9CI1oR1B1cjbWLe288XIgg2vGgaliNcDEE0wuvoHa2g6uhM9K2Apre22jjL8GZFq1XV799Dj6flpvFKlm_P78sHteJzDALSRF_mmc1rTStkCRC6EpJLKTMZEkRycuclbXGuWS1oJThlAhGKKEaF6igTGZzcDP57p39GpQPfGcH18eTPKVZiQvCGI6qdFJJZ713SvO9M51wI8eIHzPmU8Y8Zsx_MuYkQtkE-Sjut8r9Wf9DfQOWKYB7</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Eugenio, Erika de Queiros</creator><creator>Campisano, Ivone Sampaio Pereira</creator><creator>de Castro, Aline Machado</creator><creator>Coelho, Maria Alice Zarur</creator><creator>Langone, Marta Antunes Pereira</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5489-9571</orcidid></search><sort><creationdate>20220401</creationdate><title>Kinetic Modeling of the Post-consumer Poly(Ethylene Terephthalate) Hydrolysis Catalyzed by Cutinase from Humicola insolens</title><author>Eugenio, Erika de Queiros ; Campisano, Ivone Sampaio Pereira ; de Castro, Aline Machado ; Coelho, Maria Alice Zarur ; Langone, Marta Antunes Pereira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-709153d6bf6b0c4aafbec1acc3c860458598df15c9da669124a94646f170769c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Activation energy</topic><topic>Biocatalysts</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Circular economy</topic><topic>Cutinase</topic><topic>Employment</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Entropy of activation</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Enzymes</topic><topic>Ethylene</topic><topic>Fungi</topic><topic>Humicola insolens</topic><topic>Hydrolysis</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Polyethylene terephthalate</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Terephthalic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eugenio, Erika de Queiros</creatorcontrib><creatorcontrib>Campisano, Ivone Sampaio Pereira</creatorcontrib><creatorcontrib>de Castro, Aline Machado</creatorcontrib><creatorcontrib>Coelho, Maria Alice Zarur</creatorcontrib><creatorcontrib>Langone, Marta Antunes Pereira</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eugenio, Erika de Queiros</au><au>Campisano, Ivone Sampaio Pereira</au><au>de Castro, Aline Machado</au><au>Coelho, Maria Alice Zarur</au><au>Langone, Marta Antunes Pereira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Modeling of the Post-consumer Poly(Ethylene Terephthalate) Hydrolysis Catalyzed by Cutinase from Humicola insolens</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>30</volume><issue>4</issue><spage>1627</spage><epage>1637</epage><pages>1627-1637</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>The search for a straightforward technology for post-consumer poly(ethylene terephthalate) (PC-PET) degradation is essential to develop a circular economy. In this context, PET hydrolases such as cutinases can be used as bioplatforms for this purpose.
Humicola insolens
cutinase (HiC) is a promising biocatalyst for PC-PET hydrolysis. Therefore, this work evaluated a kinetic model, and it was observed that the HiC seems not to be inhibited by any of the main PET hydrolysis products such as terephthalic acid (TPA), mono-(2-hydroxyethyl) terephthalate (MHET), and bis-(2-hydroxyethyl) terephthalate (BHET). The excellent fitting of the experimental data to a kinetic model based on enzyme-limiting conditions validates its employment for describing the enzymatic PC-PET hydrolysis using two-particle size ranges (0.075–0.250, and 0.250–0.600 mm) and temperatures (40, 50, 55, 60, 70, and 80 °C). The Arrhenius law provided a reliable parameter (activation energy of 98.9 ± 2.6 kJ mol
−1
) for enzymatic hydrolysis, which compares well with reported values for chemical PET hydrolysis. The thermodynamic parameters of PC-PET hydrolysis corresponded to activation enthalpy of 96.1 ± 3.6 kJ mol
−1
and activation entropy of 78.9 ± 9.5 J mol
−1
K
−1
. Thus, the observed rate enhancement with temperature was attributed to the enthalpic contribution, and this understanding is helpful to the comprehension of enzymatic behavior in hydrolysis reaction.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-021-02301-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5489-9571</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-2543 |
ispartof | Journal of polymers and the environment, 2022-04, Vol.30 (4), p.1627-1637 |
issn | 1566-2543 1572-8919 |
language | eng |
recordid | cdi_proquest_journals_2638174991 |
source | SpringerNature Journals |
subjects | Acids Activation energy Biocatalysts Catalysis Chemistry Chemistry and Materials Science Circular economy Cutinase Employment Enthalpy Entropy Entropy of activation Environmental Chemistry Environmental Engineering/Biotechnology Enzymes Ethylene Fungi Humicola insolens Hydrolysis Industrial Chemistry/Chemical Engineering Materials Science Mathematical models Original Paper Parameters Polyethylene terephthalate Polymer Sciences Polymers Terephthalic acid |
title | Kinetic Modeling of the Post-consumer Poly(Ethylene Terephthalate) Hydrolysis Catalyzed by Cutinase from Humicola insolens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Modeling%20of%20the%20Post-consumer%20Poly(Ethylene%20Terephthalate)%20Hydrolysis%20Catalyzed%20by%20Cutinase%20from%20Humicola%20insolens&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Eugenio,%20Erika%20de%20Queiros&rft.date=2022-04-01&rft.volume=30&rft.issue=4&rft.spage=1627&rft.epage=1637&rft.pages=1627-1637&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-021-02301-4&rft_dat=%3Cproquest_cross%3E2638174991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638174991&rft_id=info:pmid/&rfr_iscdi=true |