Model Predictive Current Control With Online Parameter Estimation for Synchronous Reluctance Machine Controlled by High-Frequency Signal Injection Position-Sensorless

Accurate machine parameters and rotor position information are essential in vector-controlled motor drive systems. However, machine parameter variations by various factors such as the current and the temperature degrade the performance of vector control. Also, a position sensor such as an encoder an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.25267-25277
Hauptverfasser: Kim, Hyeon-Seong, Lee, Kibok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25277
container_issue
container_start_page 25267
container_title IEEE access
container_volume 10
creator Kim, Hyeon-Seong
Lee, Kibok
description Accurate machine parameters and rotor position information are essential in vector-controlled motor drive systems. However, machine parameter variations by various factors such as the current and the temperature degrade the performance of vector control. Also, a position sensor such as an encoder and a resolver increases the drive system cost. This paper proposes model predictive current control (MPCC) with the online parameter estimation for synchronous reluctance machines controlled by a high-frequency signal injection position-sensorless method. This approach removes the need for accurate knowledge about the system and eliminates the need for the position sensor. The proposed method adopts a recursive least-square (RLS) to estimate the electrical machine parameters in real-time. The estimated parameters are used for the deadbeat continuous control set (CCS) MPCC and the position-sensorless control. The high-frequency signal injection method is modified to be suitable for the proposed CCS-MPCC method, ensuring stable operation in the low-speed regions. Simulation and experimental results are provided to verify the performance of the proposed control method.
doi_str_mv 10.1109/ACCESS.2022.3156694
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2638123277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9727167</ieee_id><doaj_id>oai_doaj_org_article_748f087b34af413dab354c2b0f81a232</doaj_id><sourcerecordid>2638123277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-38f627e626fa2cd5c7e794a084082f67b44c2a7be83bab88b02ef33bf7ad0b0f3</originalsourceid><addsrcrecordid>eNpNkVFr2zAUhc1YYaXrL-iLYM_OZMm25Mdi0jXQ0jB37FFI8lWi4EqdJA_yh_o7p9ShTC-6XJ3zicMpipsKr6oKd99v-349DCuCCVnRqmnbrv5UXJKq7Ura0Pbzf_OX4jrGA86H51XDLou3Rz_ChLYBRquT_Quon0MAl1DvXQp-Qr9t2qMnN1kHaCuDfIEEAa1jsi8yWe-Q8QENR6f3wTs_R_QTplkn6TSgR6n3J9-ZNcGI1BHd292-vAvwZwanj2iwOycntHEH0O_ArY_2NJQDuOjDBDF-LS6MnCJcn--r4tfd-rm_Lx-efmz624dS15inknLTEgYtaY0kemw0A9bVEvP8SkzLVF1rIpkCTpVUnCtMwFCqDJMjVtjQq2KzcEcvD-I15IzhKLy04n3hw07IkKyeQLCaG8yZorU0dUVHqWiT6ZnCK0koyaxvC-s1-Bw1JnHwc8hRoyAt5VXWMJZVdFHp4GMMYD5-rbA49SuWfsWpX3HuN7tuFpcFgA9HxwirWkb_AZl6pQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638123277</pqid></control><display><type>article</type><title>Model Predictive Current Control With Online Parameter Estimation for Synchronous Reluctance Machine Controlled by High-Frequency Signal Injection Position-Sensorless</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Kim, Hyeon-Seong ; Lee, Kibok</creator><creatorcontrib>Kim, Hyeon-Seong ; Lee, Kibok</creatorcontrib><description>Accurate machine parameters and rotor position information are essential in vector-controlled motor drive systems. However, machine parameter variations by various factors such as the current and the temperature degrade the performance of vector control. Also, a position sensor such as an encoder and a resolver increases the drive system cost. This paper proposes model predictive current control (MPCC) with the online parameter estimation for synchronous reluctance machines controlled by a high-frequency signal injection position-sensorless method. This approach removes the need for accurate knowledge about the system and eliminates the need for the position sensor. The proposed method adopts a recursive least-square (RLS) to estimate the electrical machine parameters in real-time. The estimated parameters are used for the deadbeat continuous control set (CCS) MPCC and the position-sensorless control. The high-frequency signal injection method is modified to be suitable for the proposed CCS-MPCC method, ensuring stable operation in the low-speed regions. Simulation and experimental results are provided to verify the performance of the proposed control method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3156694</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coders ; Control methods ; Covariance matrices ; Directional control ; high-frequency signal injection ; Low speed ; Mathematical models ; Model predictive current control (MPCC) ; Parameter estimation ; Performance degradation ; Position sensing ; position-sensorless ; Predictive control ; Predictive models ; recursive-least square (RLS) ; Reluctance machinery ; Resolvers ; Rotors ; Signal injection ; Stators ; Switches ; synchronous reluctance machines (SynRM) ; Voltage control ; Voltage measurement</subject><ispartof>IEEE access, 2022, Vol.10, p.25267-25277</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-38f627e626fa2cd5c7e794a084082f67b44c2a7be83bab88b02ef33bf7ad0b0f3</citedby><cites>FETCH-LOGICAL-c408t-38f627e626fa2cd5c7e794a084082f67b44c2a7be83bab88b02ef33bf7ad0b0f3</cites><orcidid>0000-0002-9336-1408 ; 0000-0002-9160-8876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9727167$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kim, Hyeon-Seong</creatorcontrib><creatorcontrib>Lee, Kibok</creatorcontrib><title>Model Predictive Current Control With Online Parameter Estimation for Synchronous Reluctance Machine Controlled by High-Frequency Signal Injection Position-Sensorless</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate machine parameters and rotor position information are essential in vector-controlled motor drive systems. However, machine parameter variations by various factors such as the current and the temperature degrade the performance of vector control. Also, a position sensor such as an encoder and a resolver increases the drive system cost. This paper proposes model predictive current control (MPCC) with the online parameter estimation for synchronous reluctance machines controlled by a high-frequency signal injection position-sensorless method. This approach removes the need for accurate knowledge about the system and eliminates the need for the position sensor. The proposed method adopts a recursive least-square (RLS) to estimate the electrical machine parameters in real-time. The estimated parameters are used for the deadbeat continuous control set (CCS) MPCC and the position-sensorless control. The high-frequency signal injection method is modified to be suitable for the proposed CCS-MPCC method, ensuring stable operation in the low-speed regions. Simulation and experimental results are provided to verify the performance of the proposed control method.</description><subject>Coders</subject><subject>Control methods</subject><subject>Covariance matrices</subject><subject>Directional control</subject><subject>high-frequency signal injection</subject><subject>Low speed</subject><subject>Mathematical models</subject><subject>Model predictive current control (MPCC)</subject><subject>Parameter estimation</subject><subject>Performance degradation</subject><subject>Position sensing</subject><subject>position-sensorless</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>recursive-least square (RLS)</subject><subject>Reluctance machinery</subject><subject>Resolvers</subject><subject>Rotors</subject><subject>Signal injection</subject><subject>Stators</subject><subject>Switches</subject><subject>synchronous reluctance machines (SynRM)</subject><subject>Voltage control</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFr2zAUhc1YYaXrL-iLYM_OZMm25Mdi0jXQ0jB37FFI8lWi4EqdJA_yh_o7p9ShTC-6XJ3zicMpipsKr6oKd99v-349DCuCCVnRqmnbrv5UXJKq7Ura0Pbzf_OX4jrGA86H51XDLou3Rz_ChLYBRquT_Quon0MAl1DvXQp-Qr9t2qMnN1kHaCuDfIEEAa1jsi8yWe-Q8QENR6f3wTs_R_QTplkn6TSgR6n3J9-ZNcGI1BHd292-vAvwZwanj2iwOycntHEH0O_ArY_2NJQDuOjDBDF-LS6MnCJcn--r4tfd-rm_Lx-efmz624dS15inknLTEgYtaY0kemw0A9bVEvP8SkzLVF1rIpkCTpVUnCtMwFCqDJMjVtjQq2KzcEcvD-I15IzhKLy04n3hw07IkKyeQLCaG8yZorU0dUVHqWiT6ZnCK0koyaxvC-s1-Bw1JnHwc8hRoyAt5VXWMJZVdFHp4GMMYD5-rbA49SuWfsWpX3HuN7tuFpcFgA9HxwirWkb_AZl6pQA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kim, Hyeon-Seong</creator><creator>Lee, Kibok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9336-1408</orcidid><orcidid>https://orcid.org/0000-0002-9160-8876</orcidid></search><sort><creationdate>2022</creationdate><title>Model Predictive Current Control With Online Parameter Estimation for Synchronous Reluctance Machine Controlled by High-Frequency Signal Injection Position-Sensorless</title><author>Kim, Hyeon-Seong ; Lee, Kibok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-38f627e626fa2cd5c7e794a084082f67b44c2a7be83bab88b02ef33bf7ad0b0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Control methods</topic><topic>Covariance matrices</topic><topic>Directional control</topic><topic>high-frequency signal injection</topic><topic>Low speed</topic><topic>Mathematical models</topic><topic>Model predictive current control (MPCC)</topic><topic>Parameter estimation</topic><topic>Performance degradation</topic><topic>Position sensing</topic><topic>position-sensorless</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>recursive-least square (RLS)</topic><topic>Reluctance machinery</topic><topic>Resolvers</topic><topic>Rotors</topic><topic>Signal injection</topic><topic>Stators</topic><topic>Switches</topic><topic>synchronous reluctance machines (SynRM)</topic><topic>Voltage control</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyeon-Seong</creatorcontrib><creatorcontrib>Lee, Kibok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyeon-Seong</au><au>Lee, Kibok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Predictive Current Control With Online Parameter Estimation for Synchronous Reluctance Machine Controlled by High-Frequency Signal Injection Position-Sensorless</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>25267</spage><epage>25277</epage><pages>25267-25277</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate machine parameters and rotor position information are essential in vector-controlled motor drive systems. However, machine parameter variations by various factors such as the current and the temperature degrade the performance of vector control. Also, a position sensor such as an encoder and a resolver increases the drive system cost. This paper proposes model predictive current control (MPCC) with the online parameter estimation for synchronous reluctance machines controlled by a high-frequency signal injection position-sensorless method. This approach removes the need for accurate knowledge about the system and eliminates the need for the position sensor. The proposed method adopts a recursive least-square (RLS) to estimate the electrical machine parameters in real-time. The estimated parameters are used for the deadbeat continuous control set (CCS) MPCC and the position-sensorless control. The high-frequency signal injection method is modified to be suitable for the proposed CCS-MPCC method, ensuring stable operation in the low-speed regions. Simulation and experimental results are provided to verify the performance of the proposed control method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3156694</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9336-1408</orcidid><orcidid>https://orcid.org/0000-0002-9160-8876</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.25267-25277
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2638123277
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Coders
Control methods
Covariance matrices
Directional control
high-frequency signal injection
Low speed
Mathematical models
Model predictive current control (MPCC)
Parameter estimation
Performance degradation
Position sensing
position-sensorless
Predictive control
Predictive models
recursive-least square (RLS)
Reluctance machinery
Resolvers
Rotors
Signal injection
Stators
Switches
synchronous reluctance machines (SynRM)
Voltage control
Voltage measurement
title Model Predictive Current Control With Online Parameter Estimation for Synchronous Reluctance Machine Controlled by High-Frequency Signal Injection Position-Sensorless
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Predictive%20Current%20Control%20With%20Online%20Parameter%20Estimation%20for%20Synchronous%20Reluctance%20Machine%20Controlled%20by%20High-Frequency%20Signal%20Injection%20Position-Sensorless&rft.jtitle=IEEE%20access&rft.au=Kim,%20Hyeon-Seong&rft.date=2022&rft.volume=10&rft.spage=25267&rft.epage=25277&rft.pages=25267-25277&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3156694&rft_dat=%3Cproquest_ieee_%3E2638123277%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638123277&rft_id=info:pmid/&rft_ieee_id=9727167&rft_doaj_id=oai_doaj_org_article_748f087b34af413dab354c2b0f81a232&rfr_iscdi=true