Bayesian Approach to Light Curve Inversion of 2020 SO
Near Earth Object (NEO) 2020 SO is believed to be a Centaur rocket booster from the mid 1960’s that was temporarily recaptured by the Earth. 2020 SO entered Earth’s Hill sphere in November 2020, with close approaches in December 2020 and February 2021, where it became bright enough (approximately 14...
Gespeichert in:
Veröffentlicht in: | The Journal of the astronautical sciences 2022-02, Vol.69 (1), p.95-119 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 1 |
container_start_page | 95 |
container_title | The Journal of the astronautical sciences |
container_volume | 69 |
creator | Campbell, Tanner Furfaro, Roberto Reddy, Vishnu Battle, Adam Birtwhistle, Peter Linder, Tyler Tucker, Scott Pearson, Neil |
description | Near Earth Object (NEO) 2020 SO is believed to be a Centaur rocket booster from the mid 1960’s that was temporarily recaptured by the Earth. 2020 SO entered Earth’s Hill sphere in November 2020, with close approaches in December 2020 and February 2021, where it became bright enough (approximately 14 V magnitude) to be observed by Raven-class (< 1 m) telescopes. In this paper, 2020 SO’s spin state and reflective properties are estimated using data collected from multiple telescope sites around the world during both close approaches. The 95% Highest Posterior Density (HPD) region and Maximum A Posteriori (MAP) spin state and reflective properties of 2020 SO are estimated using Bayes’ theorem via Markov Chain Monte Carlo (MCMC) sampling of a predictive light curve simulation that is based on an anisotropic Phong reflection model. We estimate ten parameters at the start of an observation epoch: attitude quaternion (4), angular velocity vector (3), and diffusive/specular reflectivity parameters (3). Using a Fourier fitting and least squares minimization technique we find a joint-estimated period of 9.328 ± 0.275 s at a 2
σ
confidence level in the light curves of 2020 SO that further provides support for it being an artificial object as the current most rapidly rotating known asteroid is 2017 QG18 with a period over 1.3 times slower. The method of light curve inversion employed in this paper can be applied directly to other NEOs given photometric observations with a high enough temporal density and knowledge of some approximate physical properties of the object. |
doi_str_mv | 10.1007/s40295-021-00301-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2638065938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638065938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6e23ade701e8552a1358156dfadca75cce30a0155c2638ff92b996ce2501d7ae3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmXwBzhF4lywk6VtjmPiY9KkHYBzFFJ36wRtSbpJ268npUjcOFmyn9e2HsauEW4RIL8LUxBapSAwBZCA6fGEJQKHlsrxlCUwjDROxTm7CGEbIQSNCVP39kChtg2fdZ1vrdvwvuXLer3p-Xzn98QXzZ58qNuGtxUXIIC_rC7ZWWU_Al391gl7e3x4nT-ny9XTYj5bpk6i7tOMhLQl5YBUKCUsSlWgysrKls7myjmSYAGVciKTRVVp8a515kgowDK3JCfsZtwbX_vaUejNtt35Jp40QwIypWURKTFSzrcheKpM5-tP6w8GwQx6zKjHRAfmR485xpAcQyHCzZr83-p_Ut_PFWXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638065938</pqid></control><display><type>article</type><title>Bayesian Approach to Light Curve Inversion of 2020 SO</title><source>Springer Nature - Complete Springer Journals</source><creator>Campbell, Tanner ; Furfaro, Roberto ; Reddy, Vishnu ; Battle, Adam ; Birtwhistle, Peter ; Linder, Tyler ; Tucker, Scott ; Pearson, Neil</creator><creatorcontrib>Campbell, Tanner ; Furfaro, Roberto ; Reddy, Vishnu ; Battle, Adam ; Birtwhistle, Peter ; Linder, Tyler ; Tucker, Scott ; Pearson, Neil</creatorcontrib><description>Near Earth Object (NEO) 2020 SO is believed to be a Centaur rocket booster from the mid 1960’s that was temporarily recaptured by the Earth. 2020 SO entered Earth’s Hill sphere in November 2020, with close approaches in December 2020 and February 2021, where it became bright enough (approximately 14 V magnitude) to be observed by Raven-class (< 1 m) telescopes. In this paper, 2020 SO’s spin state and reflective properties are estimated using data collected from multiple telescope sites around the world during both close approaches. The 95% Highest Posterior Density (HPD) region and Maximum A Posteriori (MAP) spin state and reflective properties of 2020 SO are estimated using Bayes’ theorem via Markov Chain Monte Carlo (MCMC) sampling of a predictive light curve simulation that is based on an anisotropic Phong reflection model. We estimate ten parameters at the start of an observation epoch: attitude quaternion (4), angular velocity vector (3), and diffusive/specular reflectivity parameters (3). Using a Fourier fitting and least squares minimization technique we find a joint-estimated period of 9.328 ± 0.275 s at a 2
σ
confidence level in the light curves of 2020 SO that further provides support for it being an artificial object as the current most rapidly rotating known asteroid is 2017 QG18 with a period over 1.3 times slower. The method of light curve inversion employed in this paper can be applied directly to other NEOs given photometric observations with a high enough temporal density and knowledge of some approximate physical properties of the object.</description><identifier>ISSN: 0021-9142</identifier><identifier>EISSN: 2195-0571</identifier><identifier>DOI: 10.1007/s40295-021-00301-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerospace Technology and Astronautics ; Angular velocity ; Bayesian analysis ; Booster rocket engines ; Confidence intervals ; Density ; Earth ; Emerging Techniques in Space Domain Awareness ; Engineering ; Light curve ; Markov chains ; Mathematical Applications in the Physical Sciences ; Near-Earth Objects ; Original Article ; Parameters ; Physical properties ; Quaternions ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Telescopes</subject><ispartof>The Journal of the astronautical sciences, 2022-02, Vol.69 (1), p.95-119</ispartof><rights>American Astronautical Society 2022</rights><rights>American Astronautical Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6e23ade701e8552a1358156dfadca75cce30a0155c2638ff92b996ce2501d7ae3</citedby><cites>FETCH-LOGICAL-c319t-6e23ade701e8552a1358156dfadca75cce30a0155c2638ff92b996ce2501d7ae3</cites><orcidid>0000-0001-6076-8992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40295-021-00301-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40295-021-00301-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Campbell, Tanner</creatorcontrib><creatorcontrib>Furfaro, Roberto</creatorcontrib><creatorcontrib>Reddy, Vishnu</creatorcontrib><creatorcontrib>Battle, Adam</creatorcontrib><creatorcontrib>Birtwhistle, Peter</creatorcontrib><creatorcontrib>Linder, Tyler</creatorcontrib><creatorcontrib>Tucker, Scott</creatorcontrib><creatorcontrib>Pearson, Neil</creatorcontrib><title>Bayesian Approach to Light Curve Inversion of 2020 SO</title><title>The Journal of the astronautical sciences</title><addtitle>J Astronaut Sci</addtitle><description>Near Earth Object (NEO) 2020 SO is believed to be a Centaur rocket booster from the mid 1960’s that was temporarily recaptured by the Earth. 2020 SO entered Earth’s Hill sphere in November 2020, with close approaches in December 2020 and February 2021, where it became bright enough (approximately 14 V magnitude) to be observed by Raven-class (< 1 m) telescopes. In this paper, 2020 SO’s spin state and reflective properties are estimated using data collected from multiple telescope sites around the world during both close approaches. The 95% Highest Posterior Density (HPD) region and Maximum A Posteriori (MAP) spin state and reflective properties of 2020 SO are estimated using Bayes’ theorem via Markov Chain Monte Carlo (MCMC) sampling of a predictive light curve simulation that is based on an anisotropic Phong reflection model. We estimate ten parameters at the start of an observation epoch: attitude quaternion (4), angular velocity vector (3), and diffusive/specular reflectivity parameters (3). Using a Fourier fitting and least squares minimization technique we find a joint-estimated period of 9.328 ± 0.275 s at a 2
σ
confidence level in the light curves of 2020 SO that further provides support for it being an artificial object as the current most rapidly rotating known asteroid is 2017 QG18 with a period over 1.3 times slower. The method of light curve inversion employed in this paper can be applied directly to other NEOs given photometric observations with a high enough temporal density and knowledge of some approximate physical properties of the object.</description><subject>Aerospace Technology and Astronautics</subject><subject>Angular velocity</subject><subject>Bayesian analysis</subject><subject>Booster rocket engines</subject><subject>Confidence intervals</subject><subject>Density</subject><subject>Earth</subject><subject>Emerging Techniques in Space Domain Awareness</subject><subject>Engineering</subject><subject>Light curve</subject><subject>Markov chains</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Near-Earth Objects</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Quaternions</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Telescopes</subject><issn>0021-9142</issn><issn>2195-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmXwBzhF4lywk6VtjmPiY9KkHYBzFFJ36wRtSbpJ268npUjcOFmyn9e2HsauEW4RIL8LUxBapSAwBZCA6fGEJQKHlsrxlCUwjDROxTm7CGEbIQSNCVP39kChtg2fdZ1vrdvwvuXLer3p-Xzn98QXzZ58qNuGtxUXIIC_rC7ZWWU_Al391gl7e3x4nT-ny9XTYj5bpk6i7tOMhLQl5YBUKCUsSlWgysrKls7myjmSYAGVciKTRVVp8a515kgowDK3JCfsZtwbX_vaUejNtt35Jp40QwIypWURKTFSzrcheKpM5-tP6w8GwQx6zKjHRAfmR485xpAcQyHCzZr83-p_Ut_PFWXI</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Campbell, Tanner</creator><creator>Furfaro, Roberto</creator><creator>Reddy, Vishnu</creator><creator>Battle, Adam</creator><creator>Birtwhistle, Peter</creator><creator>Linder, Tyler</creator><creator>Tucker, Scott</creator><creator>Pearson, Neil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6076-8992</orcidid></search><sort><creationdate>20220201</creationdate><title>Bayesian Approach to Light Curve Inversion of 2020 SO</title><author>Campbell, Tanner ; Furfaro, Roberto ; Reddy, Vishnu ; Battle, Adam ; Birtwhistle, Peter ; Linder, Tyler ; Tucker, Scott ; Pearson, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6e23ade701e8552a1358156dfadca75cce30a0155c2638ff92b996ce2501d7ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Angular velocity</topic><topic>Bayesian analysis</topic><topic>Booster rocket engines</topic><topic>Confidence intervals</topic><topic>Density</topic><topic>Earth</topic><topic>Emerging Techniques in Space Domain Awareness</topic><topic>Engineering</topic><topic>Light curve</topic><topic>Markov chains</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Near-Earth Objects</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Quaternions</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Tanner</creatorcontrib><creatorcontrib>Furfaro, Roberto</creatorcontrib><creatorcontrib>Reddy, Vishnu</creatorcontrib><creatorcontrib>Battle, Adam</creatorcontrib><creatorcontrib>Birtwhistle, Peter</creatorcontrib><creatorcontrib>Linder, Tyler</creatorcontrib><creatorcontrib>Tucker, Scott</creatorcontrib><creatorcontrib>Pearson, Neil</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the astronautical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Tanner</au><au>Furfaro, Roberto</au><au>Reddy, Vishnu</au><au>Battle, Adam</au><au>Birtwhistle, Peter</au><au>Linder, Tyler</au><au>Tucker, Scott</au><au>Pearson, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Approach to Light Curve Inversion of 2020 SO</atitle><jtitle>The Journal of the astronautical sciences</jtitle><stitle>J Astronaut Sci</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>69</volume><issue>1</issue><spage>95</spage><epage>119</epage><pages>95-119</pages><issn>0021-9142</issn><eissn>2195-0571</eissn><abstract>Near Earth Object (NEO) 2020 SO is believed to be a Centaur rocket booster from the mid 1960’s that was temporarily recaptured by the Earth. 2020 SO entered Earth’s Hill sphere in November 2020, with close approaches in December 2020 and February 2021, where it became bright enough (approximately 14 V magnitude) to be observed by Raven-class (< 1 m) telescopes. In this paper, 2020 SO’s spin state and reflective properties are estimated using data collected from multiple telescope sites around the world during both close approaches. The 95% Highest Posterior Density (HPD) region and Maximum A Posteriori (MAP) spin state and reflective properties of 2020 SO are estimated using Bayes’ theorem via Markov Chain Monte Carlo (MCMC) sampling of a predictive light curve simulation that is based on an anisotropic Phong reflection model. We estimate ten parameters at the start of an observation epoch: attitude quaternion (4), angular velocity vector (3), and diffusive/specular reflectivity parameters (3). Using a Fourier fitting and least squares minimization technique we find a joint-estimated period of 9.328 ± 0.275 s at a 2
σ
confidence level in the light curves of 2020 SO that further provides support for it being an artificial object as the current most rapidly rotating known asteroid is 2017 QG18 with a period over 1.3 times slower. The method of light curve inversion employed in this paper can be applied directly to other NEOs given photometric observations with a high enough temporal density and knowledge of some approximate physical properties of the object.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40295-021-00301-z</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-6076-8992</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9142 |
ispartof | The Journal of the astronautical sciences, 2022-02, Vol.69 (1), p.95-119 |
issn | 0021-9142 2195-0571 |
language | eng |
recordid | cdi_proquest_journals_2638065938 |
source | Springer Nature - Complete Springer Journals |
subjects | Aerospace Technology and Astronautics Angular velocity Bayesian analysis Booster rocket engines Confidence intervals Density Earth Emerging Techniques in Space Domain Awareness Engineering Light curve Markov chains Mathematical Applications in the Physical Sciences Near-Earth Objects Original Article Parameters Physical properties Quaternions Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Telescopes |
title | Bayesian Approach to Light Curve Inversion of 2020 SO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Approach%20to%20Light%20Curve%20Inversion%20of%202020%20SO&rft.jtitle=The%20Journal%20of%20the%20astronautical%20sciences&rft.au=Campbell,%20Tanner&rft.date=2022-02-01&rft.volume=69&rft.issue=1&rft.spage=95&rft.epage=119&rft.pages=95-119&rft.issn=0021-9142&rft.eissn=2195-0571&rft_id=info:doi/10.1007/s40295-021-00301-z&rft_dat=%3Cproquest_cross%3E2638065938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638065938&rft_id=info:pmid/&rfr_iscdi=true |