Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction
Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resi...
Gespeichert in:
Veröffentlicht in: | Textile research journal 2022-03, Vol.92 (5-6), p.871-885 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 885 |
---|---|
container_issue | 5-6 |
container_start_page | 871 |
container_title | Textile research journal |
container_volume | 92 |
creator | Jeffrey Kuo, Chung-Feng Ahmad, Naveed Lin, Sheng-Yu Dewangga, Garuda Raka Satria Dong, Min-Yan |
description | Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resin mixed with the ethylene or aluminum bond group, to control the molecular weight. Advanced polymer chromatography confirmed that the number average molecular weight (Mn) of silicon resin is 41,301 g mol−1, the weight average molecular weight (Mw) is 47,982 g mol−1, and the molecular weight distribution is 1.1617, which is relatively narrow. When the addition of vinyl groups is 5%, the silicone resin Mn decreases to 18,906 g mol−1 and Mw decreases to 28,641 g mol−1. When the addition of aluminum bond groups is 5%, the silicone resin Mn decreases to 17,497 g mol−1 and Mw decreases to 27,114 g mol−1. The result of thermogravimetric analysis shows that the pyrolysis temperature rises from 265.43°C to 266.17°C after the ethylene is added to the silicon resin, and the index of heat tolerance increases from 179.14°C to 191.38°C. After the addition of aluminum bond groups, the pyrolysis temperature rises from 265.43°C to 309.37°C, and the index of heat tolerance increases from 179.14°C to 193.09°C, meaning the silicone resin has higher thermal stability. |
doi_str_mv | 10.1177/00405175211034243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637975419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00405175211034243</sage_id><sourcerecordid>2637975419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-fe13cd7a2f54b746e8daf9a6216e4f915e80cd55ab332569d8be6babc4624a013</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89Ykm4_doxS_oOBBPS-z2aRNaZM1SQ_992ap4EE8DTPzPu98IHRLyYJSpe4J4URQJRilpOaM12doRhWXlVK8OUezqV9Ngkt0ldKWENI0qpkh-370eWOSSxj8gPUGIuhsokvZaQzjuHMasgs-4WBxciUNHscClIoNERcY78Pg7NH5NYa18Rk7jzcGMi7S4aAn-hpdWNglc_MT5-jz6fFj-VKt3p5flw-rSjPJc2UNrfWggFnB-7K9aQawLUhGpeG2pcI0RA9CQF_XTMh2aHoje-g1l4wDofUc3Z18xxi-DiblbhsO0ZeRHZO1apXgtC0qelLpGFKKxnZjdHuIx46Sbnpn9-edhVmcmFRu_HX9H_gGsdZ2UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637975419</pqid></control><display><type>article</type><title>Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction</title><source>SAGE Complete</source><creator>Jeffrey Kuo, Chung-Feng ; Ahmad, Naveed ; Lin, Sheng-Yu ; Dewangga, Garuda Raka Satria ; Dong, Min-Yan</creator><creatorcontrib>Jeffrey Kuo, Chung-Feng ; Ahmad, Naveed ; Lin, Sheng-Yu ; Dewangga, Garuda Raka Satria ; Dong, Min-Yan</creatorcontrib><description>Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resin mixed with the ethylene or aluminum bond group, to control the molecular weight. Advanced polymer chromatography confirmed that the number average molecular weight (Mn) of silicon resin is 41,301 g mol−1, the weight average molecular weight (Mw) is 47,982 g mol−1, and the molecular weight distribution is 1.1617, which is relatively narrow. When the addition of vinyl groups is 5%, the silicone resin Mn decreases to 18,906 g mol−1 and Mw decreases to 28,641 g mol−1. When the addition of aluminum bond groups is 5%, the silicone resin Mn decreases to 17,497 g mol−1 and Mw decreases to 27,114 g mol−1. The result of thermogravimetric analysis shows that the pyrolysis temperature rises from 265.43°C to 266.17°C after the ethylene is added to the silicon resin, and the index of heat tolerance increases from 179.14°C to 191.38°C. After the addition of aluminum bond groups, the pyrolysis temperature rises from 265.43°C to 309.37°C, and the index of heat tolerance increases from 179.14°C to 193.09°C, meaning the silicone resin has higher thermal stability.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/00405175211034243</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aluminum ; Conduction heating ; Conductive heat transfer ; Ethylene ; Heat ; Heat tolerance ; Molecular weight ; Molecular weight distribution ; Polymers ; Pyrolysis ; Resins ; Silicon ; Silicone resins ; Silicones ; Siloxanes ; Smart materials ; Sol-gel processes ; Substrates ; Textiles ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Textile research journal, 2022-03, Vol.92 (5-6), p.871-885</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-fe13cd7a2f54b746e8daf9a6216e4f915e80cd55ab332569d8be6babc4624a013</cites><orcidid>0000-0002-9025-8755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00405175211034243$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00405175211034243$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Jeffrey Kuo, Chung-Feng</creatorcontrib><creatorcontrib>Ahmad, Naveed</creatorcontrib><creatorcontrib>Lin, Sheng-Yu</creatorcontrib><creatorcontrib>Dewangga, Garuda Raka Satria</creatorcontrib><creatorcontrib>Dong, Min-Yan</creatorcontrib><title>Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction</title><title>Textile research journal</title><description>Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resin mixed with the ethylene or aluminum bond group, to control the molecular weight. Advanced polymer chromatography confirmed that the number average molecular weight (Mn) of silicon resin is 41,301 g mol−1, the weight average molecular weight (Mw) is 47,982 g mol−1, and the molecular weight distribution is 1.1617, which is relatively narrow. When the addition of vinyl groups is 5%, the silicone resin Mn decreases to 18,906 g mol−1 and Mw decreases to 28,641 g mol−1. When the addition of aluminum bond groups is 5%, the silicone resin Mn decreases to 17,497 g mol−1 and Mw decreases to 27,114 g mol−1. The result of thermogravimetric analysis shows that the pyrolysis temperature rises from 265.43°C to 266.17°C after the ethylene is added to the silicon resin, and the index of heat tolerance increases from 179.14°C to 191.38°C. After the addition of aluminum bond groups, the pyrolysis temperature rises from 265.43°C to 309.37°C, and the index of heat tolerance increases from 179.14°C to 193.09°C, meaning the silicone resin has higher thermal stability.</description><subject>Aluminum</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Ethylene</subject><subject>Heat</subject><subject>Heat tolerance</subject><subject>Molecular weight</subject><subject>Molecular weight distribution</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>Resins</subject><subject>Silicon</subject><subject>Silicone resins</subject><subject>Silicones</subject><subject>Siloxanes</subject><subject>Smart materials</subject><subject>Sol-gel processes</subject><subject>Substrates</subject><subject>Textiles</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89Ykm4_doxS_oOBBPS-z2aRNaZM1SQ_992ap4EE8DTPzPu98IHRLyYJSpe4J4URQJRilpOaM12doRhWXlVK8OUezqV9Ngkt0ldKWENI0qpkh-370eWOSSxj8gPUGIuhsokvZaQzjuHMasgs-4WBxciUNHscClIoNERcY78Pg7NH5NYa18Rk7jzcGMi7S4aAn-hpdWNglc_MT5-jz6fFj-VKt3p5flw-rSjPJc2UNrfWggFnB-7K9aQawLUhGpeG2pcI0RA9CQF_XTMh2aHoje-g1l4wDofUc3Z18xxi-DiblbhsO0ZeRHZO1apXgtC0qelLpGFKKxnZjdHuIx46Sbnpn9-edhVmcmFRu_HX9H_gGsdZ2UQ</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Jeffrey Kuo, Chung-Feng</creator><creator>Ahmad, Naveed</creator><creator>Lin, Sheng-Yu</creator><creator>Dewangga, Garuda Raka Satria</creator><creator>Dong, Min-Yan</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9025-8755</orcidid></search><sort><creationdate>202203</creationdate><title>Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction</title><author>Jeffrey Kuo, Chung-Feng ; Ahmad, Naveed ; Lin, Sheng-Yu ; Dewangga, Garuda Raka Satria ; Dong, Min-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-fe13cd7a2f54b746e8daf9a6216e4f915e80cd55ab332569d8be6babc4624a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Ethylene</topic><topic>Heat</topic><topic>Heat tolerance</topic><topic>Molecular weight</topic><topic>Molecular weight distribution</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>Resins</topic><topic>Silicon</topic><topic>Silicone resins</topic><topic>Silicones</topic><topic>Siloxanes</topic><topic>Smart materials</topic><topic>Sol-gel processes</topic><topic>Substrates</topic><topic>Textiles</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeffrey Kuo, Chung-Feng</creatorcontrib><creatorcontrib>Ahmad, Naveed</creatorcontrib><creatorcontrib>Lin, Sheng-Yu</creatorcontrib><creatorcontrib>Dewangga, Garuda Raka Satria</creatorcontrib><creatorcontrib>Dong, Min-Yan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Textile research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeffrey Kuo, Chung-Feng</au><au>Ahmad, Naveed</au><au>Lin, Sheng-Yu</au><au>Dewangga, Garuda Raka Satria</au><au>Dong, Min-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction</atitle><jtitle>Textile research journal</jtitle><date>2022-03</date><risdate>2022</risdate><volume>92</volume><issue>5-6</issue><spage>871</spage><epage>885</epage><pages>871-885</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resin mixed with the ethylene or aluminum bond group, to control the molecular weight. Advanced polymer chromatography confirmed that the number average molecular weight (Mn) of silicon resin is 41,301 g mol−1, the weight average molecular weight (Mw) is 47,982 g mol−1, and the molecular weight distribution is 1.1617, which is relatively narrow. When the addition of vinyl groups is 5%, the silicone resin Mn decreases to 18,906 g mol−1 and Mw decreases to 28,641 g mol−1. When the addition of aluminum bond groups is 5%, the silicone resin Mn decreases to 17,497 g mol−1 and Mw decreases to 27,114 g mol−1. The result of thermogravimetric analysis shows that the pyrolysis temperature rises from 265.43°C to 266.17°C after the ethylene is added to the silicon resin, and the index of heat tolerance increases from 179.14°C to 191.38°C. After the addition of aluminum bond groups, the pyrolysis temperature rises from 265.43°C to 309.37°C, and the index of heat tolerance increases from 179.14°C to 193.09°C, meaning the silicone resin has higher thermal stability.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/00405175211034243</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9025-8755</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5175 |
ispartof | Textile research journal, 2022-03, Vol.92 (5-6), p.871-885 |
issn | 0040-5175 1746-7748 |
language | eng |
recordid | cdi_proquest_journals_2637975419 |
source | SAGE Complete |
subjects | Aluminum Conduction heating Conductive heat transfer Ethylene Heat Heat tolerance Molecular weight Molecular weight distribution Polymers Pyrolysis Resins Silicon Silicone resins Silicones Siloxanes Smart materials Sol-gel processes Substrates Textiles Thermal stability Thermogravimetric analysis |
title | Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characteristic%20applications%20of%20silicon%20resins%20for%20the%20modifying%20agent%20in%20heat%20conduction&rft.jtitle=Textile%20research%20journal&rft.au=Jeffrey%20Kuo,%20Chung-Feng&rft.date=2022-03&rft.volume=92&rft.issue=5-6&rft.spage=871&rft.epage=885&rft.pages=871-885&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/00405175211034243&rft_dat=%3Cproquest_cross%3E2637975419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637975419&rft_id=info:pmid/&rft_sage_id=10.1177_00405175211034243&rfr_iscdi=true |