Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction

Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Textile research journal 2022-03, Vol.92 (5-6), p.871-885
Hauptverfasser: Jeffrey Kuo, Chung-Feng, Ahmad, Naveed, Lin, Sheng-Yu, Dewangga, Garuda Raka Satria, Dong, Min-Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 885
container_issue 5-6
container_start_page 871
container_title Textile research journal
container_volume 92
creator Jeffrey Kuo, Chung-Feng
Ahmad, Naveed
Lin, Sheng-Yu
Dewangga, Garuda Raka Satria
Dong, Min-Yan
description Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resin mixed with the ethylene or aluminum bond group, to control the molecular weight. Advanced polymer chromatography confirmed that the number average molecular weight (Mn) of silicon resin is 41,301 g mol−1, the weight average molecular weight (Mw) is 47,982 g mol−1, and the molecular weight distribution is 1.1617, which is relatively narrow. When the addition of vinyl groups is 5%, the silicone resin Mn decreases to 18,906 g mol−1 and Mw decreases to 28,641 g mol−1. When the addition of aluminum bond groups is 5%, the silicone resin Mn decreases to 17,497 g mol−1 and Mw decreases to 27,114 g mol−1. The result of thermogravimetric analysis shows that the pyrolysis temperature rises from 265.43°C to 266.17°C after the ethylene is added to the silicon resin, and the index of heat tolerance increases from 179.14°C to 191.38°C. After the addition of aluminum bond groups, the pyrolysis temperature rises from 265.43°C to 309.37°C, and the index of heat tolerance increases from 179.14°C to 193.09°C, meaning the silicone resin has higher thermal stability.
doi_str_mv 10.1177/00405175211034243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637975419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00405175211034243</sage_id><sourcerecordid>2637975419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-fe13cd7a2f54b746e8daf9a6216e4f915e80cd55ab332569d8be6babc4624a013</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89Ykm4_doxS_oOBBPS-z2aRNaZM1SQ_992ap4EE8DTPzPu98IHRLyYJSpe4J4URQJRilpOaM12doRhWXlVK8OUezqV9Ngkt0ldKWENI0qpkh-370eWOSSxj8gPUGIuhsokvZaQzjuHMasgs-4WBxciUNHscClIoNERcY78Pg7NH5NYa18Rk7jzcGMi7S4aAn-hpdWNglc_MT5-jz6fFj-VKt3p5flw-rSjPJc2UNrfWggFnB-7K9aQawLUhGpeG2pcI0RA9CQF_XTMh2aHoje-g1l4wDofUc3Z18xxi-DiblbhsO0ZeRHZO1apXgtC0qelLpGFKKxnZjdHuIx46Sbnpn9-edhVmcmFRu_HX9H_gGsdZ2UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637975419</pqid></control><display><type>article</type><title>Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction</title><source>SAGE Complete</source><creator>Jeffrey Kuo, Chung-Feng ; Ahmad, Naveed ; Lin, Sheng-Yu ; Dewangga, Garuda Raka Satria ; Dong, Min-Yan</creator><creatorcontrib>Jeffrey Kuo, Chung-Feng ; Ahmad, Naveed ; Lin, Sheng-Yu ; Dewangga, Garuda Raka Satria ; Dong, Min-Yan</creatorcontrib><description>Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resin mixed with the ethylene or aluminum bond group, to control the molecular weight. Advanced polymer chromatography confirmed that the number average molecular weight (Mn) of silicon resin is 41,301 g mol−1, the weight average molecular weight (Mw) is 47,982 g mol−1, and the molecular weight distribution is 1.1617, which is relatively narrow. When the addition of vinyl groups is 5%, the silicone resin Mn decreases to 18,906 g mol−1 and Mw decreases to 28,641 g mol−1. When the addition of aluminum bond groups is 5%, the silicone resin Mn decreases to 17,497 g mol−1 and Mw decreases to 27,114 g mol−1. The result of thermogravimetric analysis shows that the pyrolysis temperature rises from 265.43°C to 266.17°C after the ethylene is added to the silicon resin, and the index of heat tolerance increases from 179.14°C to 191.38°C. After the addition of aluminum bond groups, the pyrolysis temperature rises from 265.43°C to 309.37°C, and the index of heat tolerance increases from 179.14°C to 193.09°C, meaning the silicone resin has higher thermal stability.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/00405175211034243</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aluminum ; Conduction heating ; Conductive heat transfer ; Ethylene ; Heat ; Heat tolerance ; Molecular weight ; Molecular weight distribution ; Polymers ; Pyrolysis ; Resins ; Silicon ; Silicone resins ; Silicones ; Siloxanes ; Smart materials ; Sol-gel processes ; Substrates ; Textiles ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Textile research journal, 2022-03, Vol.92 (5-6), p.871-885</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-fe13cd7a2f54b746e8daf9a6216e4f915e80cd55ab332569d8be6babc4624a013</cites><orcidid>0000-0002-9025-8755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00405175211034243$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00405175211034243$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Jeffrey Kuo, Chung-Feng</creatorcontrib><creatorcontrib>Ahmad, Naveed</creatorcontrib><creatorcontrib>Lin, Sheng-Yu</creatorcontrib><creatorcontrib>Dewangga, Garuda Raka Satria</creatorcontrib><creatorcontrib>Dong, Min-Yan</creatorcontrib><title>Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction</title><title>Textile research journal</title><description>Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resin mixed with the ethylene or aluminum bond group, to control the molecular weight. Advanced polymer chromatography confirmed that the number average molecular weight (Mn) of silicon resin is 41,301 g mol−1, the weight average molecular weight (Mw) is 47,982 g mol−1, and the molecular weight distribution is 1.1617, which is relatively narrow. When the addition of vinyl groups is 5%, the silicone resin Mn decreases to 18,906 g mol−1 and Mw decreases to 28,641 g mol−1. When the addition of aluminum bond groups is 5%, the silicone resin Mn decreases to 17,497 g mol−1 and Mw decreases to 27,114 g mol−1. The result of thermogravimetric analysis shows that the pyrolysis temperature rises from 265.43°C to 266.17°C after the ethylene is added to the silicon resin, and the index of heat tolerance increases from 179.14°C to 191.38°C. After the addition of aluminum bond groups, the pyrolysis temperature rises from 265.43°C to 309.37°C, and the index of heat tolerance increases from 179.14°C to 193.09°C, meaning the silicone resin has higher thermal stability.</description><subject>Aluminum</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Ethylene</subject><subject>Heat</subject><subject>Heat tolerance</subject><subject>Molecular weight</subject><subject>Molecular weight distribution</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>Resins</subject><subject>Silicon</subject><subject>Silicone resins</subject><subject>Silicones</subject><subject>Siloxanes</subject><subject>Smart materials</subject><subject>Sol-gel processes</subject><subject>Substrates</subject><subject>Textiles</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89Ykm4_doxS_oOBBPS-z2aRNaZM1SQ_992ap4EE8DTPzPu98IHRLyYJSpe4J4URQJRilpOaM12doRhWXlVK8OUezqV9Ngkt0ldKWENI0qpkh-370eWOSSxj8gPUGIuhsokvZaQzjuHMasgs-4WBxciUNHscClIoNERcY78Pg7NH5NYa18Rk7jzcGMi7S4aAn-hpdWNglc_MT5-jz6fFj-VKt3p5flw-rSjPJc2UNrfWggFnB-7K9aQawLUhGpeG2pcI0RA9CQF_XTMh2aHoje-g1l4wDofUc3Z18xxi-DiblbhsO0ZeRHZO1apXgtC0qelLpGFKKxnZjdHuIx46Sbnpn9-edhVmcmFRu_HX9H_gGsdZ2UQ</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Jeffrey Kuo, Chung-Feng</creator><creator>Ahmad, Naveed</creator><creator>Lin, Sheng-Yu</creator><creator>Dewangga, Garuda Raka Satria</creator><creator>Dong, Min-Yan</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9025-8755</orcidid></search><sort><creationdate>202203</creationdate><title>Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction</title><author>Jeffrey Kuo, Chung-Feng ; Ahmad, Naveed ; Lin, Sheng-Yu ; Dewangga, Garuda Raka Satria ; Dong, Min-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-fe13cd7a2f54b746e8daf9a6216e4f915e80cd55ab332569d8be6babc4624a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Ethylene</topic><topic>Heat</topic><topic>Heat tolerance</topic><topic>Molecular weight</topic><topic>Molecular weight distribution</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>Resins</topic><topic>Silicon</topic><topic>Silicone resins</topic><topic>Silicones</topic><topic>Siloxanes</topic><topic>Smart materials</topic><topic>Sol-gel processes</topic><topic>Substrates</topic><topic>Textiles</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeffrey Kuo, Chung-Feng</creatorcontrib><creatorcontrib>Ahmad, Naveed</creatorcontrib><creatorcontrib>Lin, Sheng-Yu</creatorcontrib><creatorcontrib>Dewangga, Garuda Raka Satria</creatorcontrib><creatorcontrib>Dong, Min-Yan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Textile research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeffrey Kuo, Chung-Feng</au><au>Ahmad, Naveed</au><au>Lin, Sheng-Yu</au><au>Dewangga, Garuda Raka Satria</au><au>Dong, Min-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction</atitle><jtitle>Textile research journal</jtitle><date>2022-03</date><risdate>2022</risdate><volume>92</volume><issue>5-6</issue><spage>871</spage><epage>885</epage><pages>871-885</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>Heat energy retention and dissipation have become key points of global smart textiles in recent years. This study describes the designing of silicon resin by using a sol–gel process, which acts as the modifying agent for siloxane substrate. The modifying agent was effectively blocked by silicon resin mixed with the ethylene or aluminum bond group, to control the molecular weight. Advanced polymer chromatography confirmed that the number average molecular weight (Mn) of silicon resin is 41,301 g mol−1, the weight average molecular weight (Mw) is 47,982 g mol−1, and the molecular weight distribution is 1.1617, which is relatively narrow. When the addition of vinyl groups is 5%, the silicone resin Mn decreases to 18,906 g mol−1 and Mw decreases to 28,641 g mol−1. When the addition of aluminum bond groups is 5%, the silicone resin Mn decreases to 17,497 g mol−1 and Mw decreases to 27,114 g mol−1. The result of thermogravimetric analysis shows that the pyrolysis temperature rises from 265.43°C to 266.17°C after the ethylene is added to the silicon resin, and the index of heat tolerance increases from 179.14°C to 191.38°C. After the addition of aluminum bond groups, the pyrolysis temperature rises from 265.43°C to 309.37°C, and the index of heat tolerance increases from 179.14°C to 193.09°C, meaning the silicone resin has higher thermal stability.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/00405175211034243</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9025-8755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5175
ispartof Textile research journal, 2022-03, Vol.92 (5-6), p.871-885
issn 0040-5175
1746-7748
language eng
recordid cdi_proquest_journals_2637975419
source SAGE Complete
subjects Aluminum
Conduction heating
Conductive heat transfer
Ethylene
Heat
Heat tolerance
Molecular weight
Molecular weight distribution
Polymers
Pyrolysis
Resins
Silicon
Silicone resins
Silicones
Siloxanes
Smart materials
Sol-gel processes
Substrates
Textiles
Thermal stability
Thermogravimetric analysis
title Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characteristic%20applications%20of%20silicon%20resins%20for%20the%20modifying%20agent%20in%20heat%20conduction&rft.jtitle=Textile%20research%20journal&rft.au=Jeffrey%20Kuo,%20Chung-Feng&rft.date=2022-03&rft.volume=92&rft.issue=5-6&rft.spage=871&rft.epage=885&rft.pages=871-885&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/00405175211034243&rft_dat=%3Cproquest_cross%3E2637975419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637975419&rft_id=info:pmid/&rft_sage_id=10.1177_00405175211034243&rfr_iscdi=true