Federated Learning Approach to Protect Healthcare Data over Big Data Scenario

The benefits and drawbacks of various technologies, as well as the scope of their application, are thoroughly discussed. The use of anonymity technology and differential privacy in data collection can aid in the prevention of attacks based on background knowledge gleaned from data integration and fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-03, Vol.14 (5), p.2500
Hauptverfasser: Dhiman, Gaurav, Juneja, Sapna, Mohafez, Hamidreza, El-Bayoumy, Ibrahim, Sharma, Lokesh Kumar, Hadizadeh, Maryam, Islam, Mohammad Aminul, Viriyasitavat, Wattana, Khandaker, Mayeen Uddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 2500
container_title Sustainability
container_volume 14
creator Dhiman, Gaurav
Juneja, Sapna
Mohafez, Hamidreza
El-Bayoumy, Ibrahim
Sharma, Lokesh Kumar
Hadizadeh, Maryam
Islam, Mohammad Aminul
Viriyasitavat, Wattana
Khandaker, Mayeen Uddin
description The benefits and drawbacks of various technologies, as well as the scope of their application, are thoroughly discussed. The use of anonymity technology and differential privacy in data collection can aid in the prevention of attacks based on background knowledge gleaned from data integration and fusion. The majority of medical big data are stored on a cloud computing platform during the storage stage. To ensure the confidentiality and integrity of the information stored, encryption and auditing procedures are frequently used. Access control mechanisms are mostly used during the data sharing stage to regulate the objects that have access to the data. The privacy protection of medical and health big data is carried out under the supervision of machine learning during the data analysis stage. Finally, acceptable ideas are put forward from the management level as a result of the general privacy protection concerns that exist throughout the life cycle of medical big data throughout the industry.
doi_str_mv 10.3390/su14052500
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637831064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637831064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2048239c07cf91abe691ca9e863456bb9ea7158380e5fda638b14537c96dabe33</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsNRe_AUL3oTobCa7yR5rtVaoKKjnMNlM2pSa1N2t4L83UkHnMvPgY97jCXGu4ArRwnXYqwx0qgGOxCiFXCUKNBz_u0_FJIQNDIOorDIj8Tjnmj1FruWSyXdtt5LT3c735NYy9vLZ95FdlAumbVw78ixvKZLsP9nLm3Z1UC-OO_JtfyZOGtoGnvzusXib373OFsny6f5hNl0mLrU6JilkRYrWQe4aq6hiY5Ujy4XBTJuqsky50gUWwLqpyWBRqUxj7qypBxpxLC4Of4egH3sOsdz0e98NlmVqMC9QgckG6vJAOd-H4Lkpd759J_9VKih_Giv_GsNvYdNb-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637831064</pqid></control><display><type>article</type><title>Federated Learning Approach to Protect Healthcare Data over Big Data Scenario</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dhiman, Gaurav ; Juneja, Sapna ; Mohafez, Hamidreza ; El-Bayoumy, Ibrahim ; Sharma, Lokesh Kumar ; Hadizadeh, Maryam ; Islam, Mohammad Aminul ; Viriyasitavat, Wattana ; Khandaker, Mayeen Uddin</creator><creatorcontrib>Dhiman, Gaurav ; Juneja, Sapna ; Mohafez, Hamidreza ; El-Bayoumy, Ibrahim ; Sharma, Lokesh Kumar ; Hadizadeh, Maryam ; Islam, Mohammad Aminul ; Viriyasitavat, Wattana ; Khandaker, Mayeen Uddin</creatorcontrib><description>The benefits and drawbacks of various technologies, as well as the scope of their application, are thoroughly discussed. The use of anonymity technology and differential privacy in data collection can aid in the prevention of attacks based on background knowledge gleaned from data integration and fusion. The majority of medical big data are stored on a cloud computing platform during the storage stage. To ensure the confidentiality and integrity of the information stored, encryption and auditing procedures are frequently used. Access control mechanisms are mostly used during the data sharing stage to regulate the objects that have access to the data. The privacy protection of medical and health big data is carried out under the supervision of machine learning during the data analysis stage. Finally, acceptable ideas are put forward from the management level as a result of the general privacy protection concerns that exist throughout the life cycle of medical big data throughout the industry.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14052500</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Big Data ; Data collection ; Data integration ; Data retrieval ; Health care ; Information technology ; Internet ; Medical records ; Medical treatment ; Personal information ; Privacy ; R&amp;D ; Research &amp; development ; Wearable computers</subject><ispartof>Sustainability, 2022-03, Vol.14 (5), p.2500</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2048239c07cf91abe691ca9e863456bb9ea7158380e5fda638b14537c96dabe33</citedby><cites>FETCH-LOGICAL-c295t-2048239c07cf91abe691ca9e863456bb9ea7158380e5fda638b14537c96dabe33</cites><orcidid>0000-0001-5861-5049 ; 0000-0003-3772-294X ; 0000-0002-6343-5197 ; 0000-0002-3862-9125 ; 0000-0003-4601-7679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Dhiman, Gaurav</creatorcontrib><creatorcontrib>Juneja, Sapna</creatorcontrib><creatorcontrib>Mohafez, Hamidreza</creatorcontrib><creatorcontrib>El-Bayoumy, Ibrahim</creatorcontrib><creatorcontrib>Sharma, Lokesh Kumar</creatorcontrib><creatorcontrib>Hadizadeh, Maryam</creatorcontrib><creatorcontrib>Islam, Mohammad Aminul</creatorcontrib><creatorcontrib>Viriyasitavat, Wattana</creatorcontrib><creatorcontrib>Khandaker, Mayeen Uddin</creatorcontrib><title>Federated Learning Approach to Protect Healthcare Data over Big Data Scenario</title><title>Sustainability</title><description>The benefits and drawbacks of various technologies, as well as the scope of their application, are thoroughly discussed. The use of anonymity technology and differential privacy in data collection can aid in the prevention of attacks based on background knowledge gleaned from data integration and fusion. The majority of medical big data are stored on a cloud computing platform during the storage stage. To ensure the confidentiality and integrity of the information stored, encryption and auditing procedures are frequently used. Access control mechanisms are mostly used during the data sharing stage to regulate the objects that have access to the data. The privacy protection of medical and health big data is carried out under the supervision of machine learning during the data analysis stage. Finally, acceptable ideas are put forward from the management level as a result of the general privacy protection concerns that exist throughout the life cycle of medical big data throughout the industry.</description><subject>Access control</subject><subject>Big Data</subject><subject>Data collection</subject><subject>Data integration</subject><subject>Data retrieval</subject><subject>Health care</subject><subject>Information technology</subject><subject>Internet</subject><subject>Medical records</subject><subject>Medical treatment</subject><subject>Personal information</subject><subject>Privacy</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Wearable computers</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkEFLw0AQhRdRsNRe_AUL3oTobCa7yR5rtVaoKKjnMNlM2pSa1N2t4L83UkHnMvPgY97jCXGu4ArRwnXYqwx0qgGOxCiFXCUKNBz_u0_FJIQNDIOorDIj8Tjnmj1FruWSyXdtt5LT3c735NYy9vLZ95FdlAumbVw78ixvKZLsP9nLm3Z1UC-OO_JtfyZOGtoGnvzusXib373OFsny6f5hNl0mLrU6JilkRYrWQe4aq6hiY5Ujy4XBTJuqsky50gUWwLqpyWBRqUxj7qypBxpxLC4Of4egH3sOsdz0e98NlmVqMC9QgckG6vJAOd-H4Lkpd759J_9VKih_Giv_GsNvYdNb-g</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Dhiman, Gaurav</creator><creator>Juneja, Sapna</creator><creator>Mohafez, Hamidreza</creator><creator>El-Bayoumy, Ibrahim</creator><creator>Sharma, Lokesh Kumar</creator><creator>Hadizadeh, Maryam</creator><creator>Islam, Mohammad Aminul</creator><creator>Viriyasitavat, Wattana</creator><creator>Khandaker, Mayeen Uddin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5861-5049</orcidid><orcidid>https://orcid.org/0000-0003-3772-294X</orcidid><orcidid>https://orcid.org/0000-0002-6343-5197</orcidid><orcidid>https://orcid.org/0000-0002-3862-9125</orcidid><orcidid>https://orcid.org/0000-0003-4601-7679</orcidid></search><sort><creationdate>20220301</creationdate><title>Federated Learning Approach to Protect Healthcare Data over Big Data Scenario</title><author>Dhiman, Gaurav ; Juneja, Sapna ; Mohafez, Hamidreza ; El-Bayoumy, Ibrahim ; Sharma, Lokesh Kumar ; Hadizadeh, Maryam ; Islam, Mohammad Aminul ; Viriyasitavat, Wattana ; Khandaker, Mayeen Uddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2048239c07cf91abe691ca9e863456bb9ea7158380e5fda638b14537c96dabe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Big Data</topic><topic>Data collection</topic><topic>Data integration</topic><topic>Data retrieval</topic><topic>Health care</topic><topic>Information technology</topic><topic>Internet</topic><topic>Medical records</topic><topic>Medical treatment</topic><topic>Personal information</topic><topic>Privacy</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Wearable computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhiman, Gaurav</creatorcontrib><creatorcontrib>Juneja, Sapna</creatorcontrib><creatorcontrib>Mohafez, Hamidreza</creatorcontrib><creatorcontrib>El-Bayoumy, Ibrahim</creatorcontrib><creatorcontrib>Sharma, Lokesh Kumar</creatorcontrib><creatorcontrib>Hadizadeh, Maryam</creatorcontrib><creatorcontrib>Islam, Mohammad Aminul</creatorcontrib><creatorcontrib>Viriyasitavat, Wattana</creatorcontrib><creatorcontrib>Khandaker, Mayeen Uddin</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhiman, Gaurav</au><au>Juneja, Sapna</au><au>Mohafez, Hamidreza</au><au>El-Bayoumy, Ibrahim</au><au>Sharma, Lokesh Kumar</au><au>Hadizadeh, Maryam</au><au>Islam, Mohammad Aminul</au><au>Viriyasitavat, Wattana</au><au>Khandaker, Mayeen Uddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Learning Approach to Protect Healthcare Data over Big Data Scenario</atitle><jtitle>Sustainability</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>2500</spage><pages>2500-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The benefits and drawbacks of various technologies, as well as the scope of their application, are thoroughly discussed. The use of anonymity technology and differential privacy in data collection can aid in the prevention of attacks based on background knowledge gleaned from data integration and fusion. The majority of medical big data are stored on a cloud computing platform during the storage stage. To ensure the confidentiality and integrity of the information stored, encryption and auditing procedures are frequently used. Access control mechanisms are mostly used during the data sharing stage to regulate the objects that have access to the data. The privacy protection of medical and health big data is carried out under the supervision of machine learning during the data analysis stage. Finally, acceptable ideas are put forward from the management level as a result of the general privacy protection concerns that exist throughout the life cycle of medical big data throughout the industry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14052500</doi><orcidid>https://orcid.org/0000-0001-5861-5049</orcidid><orcidid>https://orcid.org/0000-0003-3772-294X</orcidid><orcidid>https://orcid.org/0000-0002-6343-5197</orcidid><orcidid>https://orcid.org/0000-0002-3862-9125</orcidid><orcidid>https://orcid.org/0000-0003-4601-7679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-03, Vol.14 (5), p.2500
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2637831064
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Access control
Big Data
Data collection
Data integration
Data retrieval
Health care
Information technology
Internet
Medical records
Medical treatment
Personal information
Privacy
R&D
Research & development
Wearable computers
title Federated Learning Approach to Protect Healthcare Data over Big Data Scenario
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Learning%20Approach%20to%20Protect%20Healthcare%20Data%20over%20Big%20Data%20Scenario&rft.jtitle=Sustainability&rft.au=Dhiman,%20Gaurav&rft.date=2022-03-01&rft.volume=14&rft.issue=5&rft.spage=2500&rft.pages=2500-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14052500&rft_dat=%3Cproquest_cross%3E2637831064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637831064&rft_id=info:pmid/&rfr_iscdi=true