Rapid nitrate reduction produces pulsed NO and N2O emissions following wetting of dryland soils
Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N 2 O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and ti...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2022-03, Vol.158 (2), p.233-250 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 2 |
container_start_page | 233 |
container_title | Biogeochemistry |
container_volume | 158 |
creator | Krichels, Alexander H. Homyak, Peter M. Aronson, Emma L. Sickman, James O. Botthoff, Jon Shulman, Hannah Piper, Stephanie Andrews, Holly M. Jenerette, G. Darrel |
description | Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N
2
O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and timing remain unclear. We studied the processes producing pulsed NO and N
2
O emissions at two contrasting drylands, desert and chaparral, where despite the hot and dry conditions known to limit biological processes, some of the highest NO and N
2
O flux rates have been measured. We measured N
2
O and NO emissions every 30 min for 24 h after wetting soils with isotopically-enriched nitrate and ammonium solutions to determine production pathways and their timing. Nitrate was reduced to N
2
O within 15 min of wetting, with emissions exceeding 1000 ng N–N
2
O m
−2
s
−1
and returning to background levels within four hours, but the pulse magnitude did not increase in proportion to the amount of ammonium or nitrate added. In contrast to N
2
O, NO was emitted over 24 h and increased in proportion to ammonium addition, exceeding 600 ng N–NO m
−2
s
−1
in desert and chaparral soils. Isotope tracers suggest that both ammonia oxidation and nitrate reduction produced NO. Taken together, our measurements demonstrate that nitrate can be reduced within minutes of wetting summer-dry desert soils to produce large N
2
O emission pulses and that multiple processes contribute to long-lasting NO emissions. These mechanisms represent substantial pathways of ecosystem N loss that also contribute to regional air quality and global climate dynamics. |
doi_str_mv | 10.1007/s10533-022-00896-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637811703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637811703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-160826b18614c2afb7654ab5048cf665513fd67a033a89f3a7a5a33a0b205b2c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSNNn0KMV_UCyIgreQ3U3Klu1mTbK0_famruDN05vD772ZeQhdU7ilAMVdpCA4J8AYAVBzSfYnaEJFwYmg4vMUTYBKRZiQ_BxdxLgBgHkBfIL0m-mbGndNCiZZHGw9VKnxHe6Dz6ONuB_aaGv8usKmy8JW2G6bGDMTsfNt63dNt8Y7m9JRvcN1OLRHNPqmjZfozJkccPWrU_Tx-PC-eCbL1dPL4n5JKi55IlSCYrKkStJZxYwrCylmphQwU5WTUgjKXS0LA5wbNXfcFEaYPEPJQJSs4lN0M-bmu78GG5Pe-CF0eaVmkheK0vxupthIVcHHGKzTfWi2Jhw0BX0sUo9F6lyk_ilS77OJj6aY4W5tw1_0P65vNwF2sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637811703</pqid></control><display><type>article</type><title>Rapid nitrate reduction produces pulsed NO and N2O emissions following wetting of dryland soils</title><source>SpringerLink Journals - AutoHoldings</source><creator>Krichels, Alexander H. ; Homyak, Peter M. ; Aronson, Emma L. ; Sickman, James O. ; Botthoff, Jon ; Shulman, Hannah ; Piper, Stephanie ; Andrews, Holly M. ; Jenerette, G. Darrel</creator><creatorcontrib>Krichels, Alexander H. ; Homyak, Peter M. ; Aronson, Emma L. ; Sickman, James O. ; Botthoff, Jon ; Shulman, Hannah ; Piper, Stephanie ; Andrews, Holly M. ; Jenerette, G. Darrel</creatorcontrib><description>Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N
2
O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and timing remain unclear. We studied the processes producing pulsed NO and N
2
O emissions at two contrasting drylands, desert and chaparral, where despite the hot and dry conditions known to limit biological processes, some of the highest NO and N
2
O flux rates have been measured. We measured N
2
O and NO emissions every 30 min for 24 h after wetting soils with isotopically-enriched nitrate and ammonium solutions to determine production pathways and their timing. Nitrate was reduced to N
2
O within 15 min of wetting, with emissions exceeding 1000 ng N–N
2
O m
−2
s
−1
and returning to background levels within four hours, but the pulse magnitude did not increase in proportion to the amount of ammonium or nitrate added. In contrast to N
2
O, NO was emitted over 24 h and increased in proportion to ammonium addition, exceeding 600 ng N–NO m
−2
s
−1
in desert and chaparral soils. Isotope tracers suggest that both ammonia oxidation and nitrate reduction produced NO. Taken together, our measurements demonstrate that nitrate can be reduced within minutes of wetting summer-dry desert soils to produce large N
2
O emission pulses and that multiple processes contribute to long-lasting NO emissions. These mechanisms represent substantial pathways of ecosystem N loss that also contribute to regional air quality and global climate dynamics.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-022-00896-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Air quality ; Ammonia ; Ammonium ; Ammonium compounds ; Arid zones ; Background levels ; Biogeosciences ; Biological activity ; Chaparral ; Climate ; Desert soils ; Deserts ; Drying ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Emission measurements ; Emissions ; Environmental Chemistry ; Global climate ; Isotopes ; Life Sciences ; Nitrate reduction ; Nitrates ; Nitric oxide ; Nitrous oxide ; Oxidation ; Reduction ; Sandy soils ; Soil ; Soils ; Tracers ; Wetting</subject><ispartof>Biogeochemistry, 2022-03, Vol.158 (2), p.233-250</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-160826b18614c2afb7654ab5048cf665513fd67a033a89f3a7a5a33a0b205b2c3</citedby><cites>FETCH-LOGICAL-c363t-160826b18614c2afb7654ab5048cf665513fd67a033a89f3a7a5a33a0b205b2c3</cites><orcidid>0000-0002-6922-6476 ; 0000-0002-5018-2688 ; 0000-0003-2387-7537 ; 0000-0003-0671-8358 ; 0000-0002-5173-0826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10533-022-00896-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10533-022-00896-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Krichels, Alexander H.</creatorcontrib><creatorcontrib>Homyak, Peter M.</creatorcontrib><creatorcontrib>Aronson, Emma L.</creatorcontrib><creatorcontrib>Sickman, James O.</creatorcontrib><creatorcontrib>Botthoff, Jon</creatorcontrib><creatorcontrib>Shulman, Hannah</creatorcontrib><creatorcontrib>Piper, Stephanie</creatorcontrib><creatorcontrib>Andrews, Holly M.</creatorcontrib><creatorcontrib>Jenerette, G. Darrel</creatorcontrib><title>Rapid nitrate reduction produces pulsed NO and N2O emissions following wetting of dryland soils</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N
2
O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and timing remain unclear. We studied the processes producing pulsed NO and N
2
O emissions at two contrasting drylands, desert and chaparral, where despite the hot and dry conditions known to limit biological processes, some of the highest NO and N
2
O flux rates have been measured. We measured N
2
O and NO emissions every 30 min for 24 h after wetting soils with isotopically-enriched nitrate and ammonium solutions to determine production pathways and their timing. Nitrate was reduced to N
2
O within 15 min of wetting, with emissions exceeding 1000 ng N–N
2
O m
−2
s
−1
and returning to background levels within four hours, but the pulse magnitude did not increase in proportion to the amount of ammonium or nitrate added. In contrast to N
2
O, NO was emitted over 24 h and increased in proportion to ammonium addition, exceeding 600 ng N–NO m
−2
s
−1
in desert and chaparral soils. Isotope tracers suggest that both ammonia oxidation and nitrate reduction produced NO. Taken together, our measurements demonstrate that nitrate can be reduced within minutes of wetting summer-dry desert soils to produce large N
2
O emission pulses and that multiple processes contribute to long-lasting NO emissions. These mechanisms represent substantial pathways of ecosystem N loss that also contribute to regional air quality and global climate dynamics.</description><subject>Air quality</subject><subject>Ammonia</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Arid zones</subject><subject>Background levels</subject><subject>Biogeosciences</subject><subject>Biological activity</subject><subject>Chaparral</subject><subject>Climate</subject><subject>Desert soils</subject><subject>Deserts</subject><subject>Drying</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Environmental Chemistry</subject><subject>Global climate</subject><subject>Isotopes</subject><subject>Life Sciences</subject><subject>Nitrate reduction</subject><subject>Nitrates</subject><subject>Nitric oxide</subject><subject>Nitrous oxide</subject><subject>Oxidation</subject><subject>Reduction</subject><subject>Sandy soils</subject><subject>Soil</subject><subject>Soils</subject><subject>Tracers</subject><subject>Wetting</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SSNNn0KMV_UCyIgreQ3U3Klu1mTbK0_famruDN05vD772ZeQhdU7ilAMVdpCA4J8AYAVBzSfYnaEJFwYmg4vMUTYBKRZiQ_BxdxLgBgHkBfIL0m-mbGndNCiZZHGw9VKnxHe6Dz6ONuB_aaGv8usKmy8JW2G6bGDMTsfNt63dNt8Y7m9JRvcN1OLRHNPqmjZfozJkccPWrU_Tx-PC-eCbL1dPL4n5JKi55IlSCYrKkStJZxYwrCylmphQwU5WTUgjKXS0LA5wbNXfcFEaYPEPJQJSs4lN0M-bmu78GG5Pe-CF0eaVmkheK0vxupthIVcHHGKzTfWi2Jhw0BX0sUo9F6lyk_ilS77OJj6aY4W5tw1_0P65vNwF2sw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Krichels, Alexander H.</creator><creator>Homyak, Peter M.</creator><creator>Aronson, Emma L.</creator><creator>Sickman, James O.</creator><creator>Botthoff, Jon</creator><creator>Shulman, Hannah</creator><creator>Piper, Stephanie</creator><creator>Andrews, Holly M.</creator><creator>Jenerette, G. Darrel</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6922-6476</orcidid><orcidid>https://orcid.org/0000-0002-5018-2688</orcidid><orcidid>https://orcid.org/0000-0003-2387-7537</orcidid><orcidid>https://orcid.org/0000-0003-0671-8358</orcidid><orcidid>https://orcid.org/0000-0002-5173-0826</orcidid></search><sort><creationdate>20220301</creationdate><title>Rapid nitrate reduction produces pulsed NO and N2O emissions following wetting of dryland soils</title><author>Krichels, Alexander H. ; Homyak, Peter M. ; Aronson, Emma L. ; Sickman, James O. ; Botthoff, Jon ; Shulman, Hannah ; Piper, Stephanie ; Andrews, Holly M. ; Jenerette, G. Darrel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-160826b18614c2afb7654ab5048cf665513fd67a033a89f3a7a5a33a0b205b2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air quality</topic><topic>Ammonia</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Arid zones</topic><topic>Background levels</topic><topic>Biogeosciences</topic><topic>Biological activity</topic><topic>Chaparral</topic><topic>Climate</topic><topic>Desert soils</topic><topic>Deserts</topic><topic>Drying</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Environmental Chemistry</topic><topic>Global climate</topic><topic>Isotopes</topic><topic>Life Sciences</topic><topic>Nitrate reduction</topic><topic>Nitrates</topic><topic>Nitric oxide</topic><topic>Nitrous oxide</topic><topic>Oxidation</topic><topic>Reduction</topic><topic>Sandy soils</topic><topic>Soil</topic><topic>Soils</topic><topic>Tracers</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krichels, Alexander H.</creatorcontrib><creatorcontrib>Homyak, Peter M.</creatorcontrib><creatorcontrib>Aronson, Emma L.</creatorcontrib><creatorcontrib>Sickman, James O.</creatorcontrib><creatorcontrib>Botthoff, Jon</creatorcontrib><creatorcontrib>Shulman, Hannah</creatorcontrib><creatorcontrib>Piper, Stephanie</creatorcontrib><creatorcontrib>Andrews, Holly M.</creatorcontrib><creatorcontrib>Jenerette, G. Darrel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krichels, Alexander H.</au><au>Homyak, Peter M.</au><au>Aronson, Emma L.</au><au>Sickman, James O.</au><au>Botthoff, Jon</au><au>Shulman, Hannah</au><au>Piper, Stephanie</au><au>Andrews, Holly M.</au><au>Jenerette, G. Darrel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid nitrate reduction produces pulsed NO and N2O emissions following wetting of dryland soils</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>158</volume><issue>2</issue><spage>233</spage><epage>250</epage><pages>233-250</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N
2
O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and timing remain unclear. We studied the processes producing pulsed NO and N
2
O emissions at two contrasting drylands, desert and chaparral, where despite the hot and dry conditions known to limit biological processes, some of the highest NO and N
2
O flux rates have been measured. We measured N
2
O and NO emissions every 30 min for 24 h after wetting soils with isotopically-enriched nitrate and ammonium solutions to determine production pathways and their timing. Nitrate was reduced to N
2
O within 15 min of wetting, with emissions exceeding 1000 ng N–N
2
O m
−2
s
−1
and returning to background levels within four hours, but the pulse magnitude did not increase in proportion to the amount of ammonium or nitrate added. In contrast to N
2
O, NO was emitted over 24 h and increased in proportion to ammonium addition, exceeding 600 ng N–NO m
−2
s
−1
in desert and chaparral soils. Isotope tracers suggest that both ammonia oxidation and nitrate reduction produced NO. Taken together, our measurements demonstrate that nitrate can be reduced within minutes of wetting summer-dry desert soils to produce large N
2
O emission pulses and that multiple processes contribute to long-lasting NO emissions. These mechanisms represent substantial pathways of ecosystem N loss that also contribute to regional air quality and global climate dynamics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10533-022-00896-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6922-6476</orcidid><orcidid>https://orcid.org/0000-0002-5018-2688</orcidid><orcidid>https://orcid.org/0000-0003-2387-7537</orcidid><orcidid>https://orcid.org/0000-0003-0671-8358</orcidid><orcidid>https://orcid.org/0000-0002-5173-0826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2022-03, Vol.158 (2), p.233-250 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_proquest_journals_2637811703 |
source | SpringerLink Journals - AutoHoldings |
subjects | Air quality Ammonia Ammonium Ammonium compounds Arid zones Background levels Biogeosciences Biological activity Chaparral Climate Desert soils Deserts Drying Earth and Environmental Science Earth Sciences Ecosystems Emission measurements Emissions Environmental Chemistry Global climate Isotopes Life Sciences Nitrate reduction Nitrates Nitric oxide Nitrous oxide Oxidation Reduction Sandy soils Soil Soils Tracers Wetting |
title | Rapid nitrate reduction produces pulsed NO and N2O emissions following wetting of dryland soils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20nitrate%20reduction%20produces%20pulsed%20NO%20and%20N2O%20emissions%20following%20wetting%20of%20dryland%20soils&rft.jtitle=Biogeochemistry&rft.au=Krichels,%20Alexander%20H.&rft.date=2022-03-01&rft.volume=158&rft.issue=2&rft.spage=233&rft.epage=250&rft.pages=233-250&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-022-00896-x&rft_dat=%3Cproquest_cross%3E2637811703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637811703&rft_id=info:pmid/&rfr_iscdi=true |