Investigative study on the AC and DC breakdown voltage of nanofluid from Jatropha–Neem oil mixture for use in oil-filled power equipment
This paper investigated the feasibility of developing alternative insulating nanofluid from a mixture of Jatropha and Neem oils into which compositions of 0.2 to 1.0 wt% of titanium oxide nanoparticles were dispersed. FTIR, SEM–EDX and XRD analyses of titanium oxide nanoparticles were carried out. T...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-04, Vol.119 (7-8), p.4375-4383 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigated the feasibility of developing alternative insulating nanofluid from a mixture of Jatropha and Neem oils into which compositions of 0.2 to 1.0 wt% of titanium oxide nanoparticles were dispersed. FTIR, SEM–EDX and XRD analyses of titanium oxide nanoparticles were carried out. The DC and AC breakdown voltages were measured and analysed using Weibull statistical tool. In the Weibull statistical analysis, it was observed that the characteristic breakdown field strength of PJO is higher relative to PNO and has slight differences compared to the PJNO sample. With the dispersion of TiO
2
nanoparticles, the characteristic breakdown strength improved as compared with the base oil. Furthermore, the developed Jatropha–Neem mixture nanofluid recorded characteristic breakdown field strength that is much higher compared to that of the mineral oil sample. The mixture of Jatropha and Neem oil nanofluid sample possessed the highest characteristic breakdown strength among prepared nanofluids which indicates that the characteristic breakdown strength of the oil samples has been improved considerably with the dispersion of TiO
2
nanoparticles. The results have shown the viability of Jatropha–Neem nanofluid as insulating oil for use in oil-filled power equipment. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-021-08447-8 |