Hash-Based Deep Learning Approach for Remote Sensing Satellite Imagery Detection
Ship detection plays a crucial role in marine security in remote sensing imagery. This paper discusses about a deep learning approach to detect the ships from satellite imagery. The model developed in this work achieves integrity by the inclusion of hashing. This model employs a supervised image cla...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-03, Vol.14 (5), p.707 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 707 |
container_title | Water (Basel) |
container_volume | 14 |
creator | Gadamsetty, Samhitha Ch, Rupa Ch, Anusha Iwendi, Celestine Gadekallu, Thippa Reddy |
description | Ship detection plays a crucial role in marine security in remote sensing imagery. This paper discusses about a deep learning approach to detect the ships from satellite imagery. The model developed in this work achieves integrity by the inclusion of hashing. This model employs a supervised image classification technique to classify images, followed by object detection using You Only Look Once version 3 (YOLOv3) to extract features from deep CNN. Semantic segmentation and image segmentation is done to identify object category of each pixel using class labels. Then, the concept of hashing using SHA-256 is applied in conjunction with the ship count and location of bounding box in satellite image. The proposed model is tested on a Kaggle Ships dataset, which consists of 231,722 images. A total of 70% of this data is used for training, and the 30% is used for testing. To add security to images with detected ships, the model is enhanced by hashing using SHA-256 algorithm. Using SHA-256, which is a one-way hash, the data are split up into blocks of 64 bytes. The input data to the hash function are both the ship count and bounding box location. The proposed model achieves integrity by using SHA-256. This model allows secure transmission of highly confidential images that are tamper-proof. |
doi_str_mv | 10.3390/w14050707 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2637800771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791346291</galeid><sourcerecordid>A791346291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-d31f160eab1195827673082e0e7c10264aa7f19e7b4a46bafa8512d2629d78c33</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQXUTBUnvwHwQ8eUid_Ug2Odb6UaGgWD2HaTLbpiTZuJsi_fduqYgzhxnezHszPMauOUylzOHumytIQIM-YyMBWsZKKX7-r79kE-93EELlWZbAiL0t0G_je_RURQ9EfbQkdF3dbaJZ3zuL5TYy1kXv1NqBohV1_jhb4UBNUwfkpcUNuUPgDlQOte2u2IXBxtPkt47Z59Pjx3wRL1-fX-azZVxKyYe4ktzwFAjXnOdJJnSqJWSCgHTJQaQKURuek14rVOkaDWYJF5VIRV7pLGiM2c1JN3z5tSc_FDu7d104WYhU6gxAax62pqetDTZU1J2xg8MyZEVtXdqOTB3wmc65VEH6SLg9EUpnvXdkit7VLbpDwaE4mlz8mSx_ACt2a_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637800771</pqid></control><display><type>article</type><title>Hash-Based Deep Learning Approach for Remote Sensing Satellite Imagery Detection</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gadamsetty, Samhitha ; Ch, Rupa ; Ch, Anusha ; Iwendi, Celestine ; Gadekallu, Thippa Reddy</creator><creatorcontrib>Gadamsetty, Samhitha ; Ch, Rupa ; Ch, Anusha ; Iwendi, Celestine ; Gadekallu, Thippa Reddy</creatorcontrib><description>Ship detection plays a crucial role in marine security in remote sensing imagery. This paper discusses about a deep learning approach to detect the ships from satellite imagery. The model developed in this work achieves integrity by the inclusion of hashing. This model employs a supervised image classification technique to classify images, followed by object detection using You Only Look Once version 3 (YOLOv3) to extract features from deep CNN. Semantic segmentation and image segmentation is done to identify object category of each pixel using class labels. Then, the concept of hashing using SHA-256 is applied in conjunction with the ship count and location of bounding box in satellite image. The proposed model is tested on a Kaggle Ships dataset, which consists of 231,722 images. A total of 70% of this data is used for training, and the 30% is used for testing. To add security to images with detected ships, the model is enhanced by hashing using SHA-256 algorithm. Using SHA-256, which is a one-way hash, the data are split up into blocks of 64 bytes. The input data to the hash function are both the ship count and bounding box location. The proposed model achieves integrity by using SHA-256. This model allows secure transmission of highly confidential images that are tamper-proof.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w14050707</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Aircraft ; Algorithms ; Analysis ; Datasets ; Deep learning ; Efficiency ; Hash based algorithms ; Image classification ; Image enhancement ; Image processing ; Image retrieval ; Image transmission ; Literature reviews ; Methods ; Model testing ; National security ; Remote sensing ; Satellite imagery ; Satellites ; Security ; Ships</subject><ispartof>Water (Basel), 2022-03, Vol.14 (5), p.707</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-d31f160eab1195827673082e0e7c10264aa7f19e7b4a46bafa8512d2629d78c33</citedby><cites>FETCH-LOGICAL-c331t-d31f160eab1195827673082e0e7c10264aa7f19e7b4a46bafa8512d2629d78c33</cites><orcidid>0000-0003-0097-801X ; 0000-0003-4350-3911 ; 0000-0002-7162-8909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Gadamsetty, Samhitha</creatorcontrib><creatorcontrib>Ch, Rupa</creatorcontrib><creatorcontrib>Ch, Anusha</creatorcontrib><creatorcontrib>Iwendi, Celestine</creatorcontrib><creatorcontrib>Gadekallu, Thippa Reddy</creatorcontrib><title>Hash-Based Deep Learning Approach for Remote Sensing Satellite Imagery Detection</title><title>Water (Basel)</title><description>Ship detection plays a crucial role in marine security in remote sensing imagery. This paper discusses about a deep learning approach to detect the ships from satellite imagery. The model developed in this work achieves integrity by the inclusion of hashing. This model employs a supervised image classification technique to classify images, followed by object detection using You Only Look Once version 3 (YOLOv3) to extract features from deep CNN. Semantic segmentation and image segmentation is done to identify object category of each pixel using class labels. Then, the concept of hashing using SHA-256 is applied in conjunction with the ship count and location of bounding box in satellite image. The proposed model is tested on a Kaggle Ships dataset, which consists of 231,722 images. A total of 70% of this data is used for training, and the 30% is used for testing. To add security to images with detected ships, the model is enhanced by hashing using SHA-256 algorithm. Using SHA-256, which is a one-way hash, the data are split up into blocks of 64 bytes. The input data to the hash function are both the ship count and bounding box location. The proposed model achieves integrity by using SHA-256. This model allows secure transmission of highly confidential images that are tamper-proof.</description><subject>Accuracy</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Hash based algorithms</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image retrieval</subject><subject>Image transmission</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Model testing</subject><subject>National security</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Security</subject><subject>Ships</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1Lw0AQXUTBUnvwHwQ8eUid_Ug2Odb6UaGgWD2HaTLbpiTZuJsi_fduqYgzhxnezHszPMauOUylzOHumytIQIM-YyMBWsZKKX7-r79kE-93EELlWZbAiL0t0G_je_RURQ9EfbQkdF3dbaJZ3zuL5TYy1kXv1NqBohV1_jhb4UBNUwfkpcUNuUPgDlQOte2u2IXBxtPkt47Z59Pjx3wRL1-fX-azZVxKyYe4ktzwFAjXnOdJJnSqJWSCgHTJQaQKURuek14rVOkaDWYJF5VIRV7pLGiM2c1JN3z5tSc_FDu7d104WYhU6gxAax62pqetDTZU1J2xg8MyZEVtXdqOTB3wmc65VEH6SLg9EUpnvXdkit7VLbpDwaE4mlz8mSx_ACt2a_M</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Gadamsetty, Samhitha</creator><creator>Ch, Rupa</creator><creator>Ch, Anusha</creator><creator>Iwendi, Celestine</creator><creator>Gadekallu, Thippa Reddy</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0097-801X</orcidid><orcidid>https://orcid.org/0000-0003-4350-3911</orcidid><orcidid>https://orcid.org/0000-0002-7162-8909</orcidid></search><sort><creationdate>20220301</creationdate><title>Hash-Based Deep Learning Approach for Remote Sensing Satellite Imagery Detection</title><author>Gadamsetty, Samhitha ; Ch, Rupa ; Ch, Anusha ; Iwendi, Celestine ; Gadekallu, Thippa Reddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-d31f160eab1195827673082e0e7c10264aa7f19e7b4a46bafa8512d2629d78c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Hash based algorithms</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image retrieval</topic><topic>Image transmission</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Model testing</topic><topic>National security</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Security</topic><topic>Ships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gadamsetty, Samhitha</creatorcontrib><creatorcontrib>Ch, Rupa</creatorcontrib><creatorcontrib>Ch, Anusha</creatorcontrib><creatorcontrib>Iwendi, Celestine</creatorcontrib><creatorcontrib>Gadekallu, Thippa Reddy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadamsetty, Samhitha</au><au>Ch, Rupa</au><au>Ch, Anusha</au><au>Iwendi, Celestine</au><au>Gadekallu, Thippa Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hash-Based Deep Learning Approach for Remote Sensing Satellite Imagery Detection</atitle><jtitle>Water (Basel)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>707</spage><pages>707-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Ship detection plays a crucial role in marine security in remote sensing imagery. This paper discusses about a deep learning approach to detect the ships from satellite imagery. The model developed in this work achieves integrity by the inclusion of hashing. This model employs a supervised image classification technique to classify images, followed by object detection using You Only Look Once version 3 (YOLOv3) to extract features from deep CNN. Semantic segmentation and image segmentation is done to identify object category of each pixel using class labels. Then, the concept of hashing using SHA-256 is applied in conjunction with the ship count and location of bounding box in satellite image. The proposed model is tested on a Kaggle Ships dataset, which consists of 231,722 images. A total of 70% of this data is used for training, and the 30% is used for testing. To add security to images with detected ships, the model is enhanced by hashing using SHA-256 algorithm. Using SHA-256, which is a one-way hash, the data are split up into blocks of 64 bytes. The input data to the hash function are both the ship count and bounding box location. The proposed model achieves integrity by using SHA-256. This model allows secure transmission of highly confidential images that are tamper-proof.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w14050707</doi><orcidid>https://orcid.org/0000-0003-0097-801X</orcidid><orcidid>https://orcid.org/0000-0003-4350-3911</orcidid><orcidid>https://orcid.org/0000-0002-7162-8909</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2022-03, Vol.14 (5), p.707 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2637800771 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Aircraft Algorithms Analysis Datasets Deep learning Efficiency Hash based algorithms Image classification Image enhancement Image processing Image retrieval Image transmission Literature reviews Methods Model testing National security Remote sensing Satellite imagery Satellites Security Ships |
title | Hash-Based Deep Learning Approach for Remote Sensing Satellite Imagery Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hash-Based%20Deep%20Learning%20Approach%20for%20Remote%20Sensing%20Satellite%20Imagery%20Detection&rft.jtitle=Water%20(Basel)&rft.au=Gadamsetty,%20Samhitha&rft.date=2022-03-01&rft.volume=14&rft.issue=5&rft.spage=707&rft.pages=707-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w14050707&rft_dat=%3Cgale_proqu%3EA791346291%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637800771&rft_id=info:pmid/&rft_galeid=A791346291&rfr_iscdi=true |