Performance Assessment of Event-Based Ensemble Landslide Susceptibility Models in Shihmen Watershed, Taiwan
While multi-year and event-based landslide inventories are both commonly used in landslide susceptibility analysis, most areas lack multi-year landslide inventories, and the analysis results obtained from the use of event-based landslide inventories are very sensitive to the choice of event. Based o...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-03, Vol.14 (5), p.717 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 717 |
container_title | Water (Basel) |
container_volume | 14 |
creator | Wu, Chun-Yi Lin, Sheng-Yu |
description | While multi-year and event-based landslide inventories are both commonly used in landslide susceptibility analysis, most areas lack multi-year landslide inventories, and the analysis results obtained from the use of event-based landslide inventories are very sensitive to the choice of event. Based on 24 event-based landslide inventories for the Shihmen watershed from 1996 to 2015, this study established five event-based single landslide susceptibility models employing logistic regression, random forest, support vector machine, kernel logistic regression, and gradient boosting decision tree methods. The ensemble methods, involving calculating the mean of the susceptibility indexes (PM), median of the susceptibility indexes (PME), weighted mean of the susceptibility indexes (PMW), and committee average of binary susceptibility values (CA) of the five single models were then used to establish four event-based ensemble landslide susceptibility models. After establishing nine landslide susceptibility models, using each inventory from the 24 event-based landslide inventories or a multi-year landslide inventory, we identified the differences in landslide susceptibility maps attributable to the different landslide inventories and modeling methods, and used the area under the receiver operating characteristic curve to assess the accuracy of the models. The results indicated that an ensemble model based on a multi-year inventory can obtain excellent predictive accuracy. The predictive accuracy of multi-year landslide susceptibility models is found to be superior to that of event-based models. In addition, the higher predictive accuracy of ensemble landslide susceptibility models than that of single models implied that these ensemble methods were robust for enhancing the model’s predictive performance in the study area. When employing event-based landslide inventories in modeling, PM ensemble models offer the best predictive ability, according to the Kruskal–Wallis test results. Areas with a high mean susceptibility index and low standard deviation, identified using the 24 PM ensemble models based on different event-based landslide inventories, constitute places where landslide mitigation measures should be prioritized. |
doi_str_mv | 10.3390/w14050717 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2637791807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791346301</galeid><sourcerecordid>A791346301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-b24c5b166ad2cca4275fb3a1ae4b33ec766818d55a362699ec726bb79720485d3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqR78BwFPglvztcnusUr9gIpCKx6XbPLWpu5ma7JV-u-NVMT3Dm8YZubBIHRGyYTzklx9UUFyoqg6QCNGFM-EEPTwHz5GpzGuSRpRFkVORuj9GULTh057A3gaI8TYgR9w3-DZZwLZtY5g8cxH6OoW8Fx7G1tnAS-20cBmcLVr3bDDj72FNmLn8WLlVikDv-oBQlyBvcRL7b60P0FHjW4jnP7eMXq5nS1v7rP5093DzXSeGc7pkNVMmLymUmrLjNGCqbypuaYaRM05GCVlQQub55pLJssyMUzWtSoVI6LILR-j833uJvQfW4hDte63waeXFZNcqZIWqZAxmuxVb7qFyvmmH4I2aS10zvQeGpf4aVJzITmhyXCxN5jQxxigqTbBdTrsKkqqn_6rv_75N2-6dwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637791807</pqid></control><display><type>article</type><title>Performance Assessment of Event-Based Ensemble Landslide Susceptibility Models in Shihmen Watershed, Taiwan</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Wu, Chun-Yi ; Lin, Sheng-Yu</creator><creatorcontrib>Wu, Chun-Yi ; Lin, Sheng-Yu</creatorcontrib><description>While multi-year and event-based landslide inventories are both commonly used in landslide susceptibility analysis, most areas lack multi-year landslide inventories, and the analysis results obtained from the use of event-based landslide inventories are very sensitive to the choice of event. Based on 24 event-based landslide inventories for the Shihmen watershed from 1996 to 2015, this study established five event-based single landslide susceptibility models employing logistic regression, random forest, support vector machine, kernel logistic regression, and gradient boosting decision tree methods. The ensemble methods, involving calculating the mean of the susceptibility indexes (PM), median of the susceptibility indexes (PME), weighted mean of the susceptibility indexes (PMW), and committee average of binary susceptibility values (CA) of the five single models were then used to establish four event-based ensemble landslide susceptibility models. After establishing nine landslide susceptibility models, using each inventory from the 24 event-based landslide inventories or a multi-year landslide inventory, we identified the differences in landslide susceptibility maps attributable to the different landslide inventories and modeling methods, and used the area under the receiver operating characteristic curve to assess the accuracy of the models. The results indicated that an ensemble model based on a multi-year inventory can obtain excellent predictive accuracy. The predictive accuracy of multi-year landslide susceptibility models is found to be superior to that of event-based models. In addition, the higher predictive accuracy of ensemble landslide susceptibility models than that of single models implied that these ensemble methods were robust for enhancing the model’s predictive performance in the study area. When employing event-based landslide inventories in modeling, PM ensemble models offer the best predictive ability, according to the Kruskal–Wallis test results. Areas with a high mean susceptibility index and low standard deviation, identified using the 24 PM ensemble models based on different event-based landslide inventories, constitute places where landslide mitigation measures should be prioritized.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w14050717</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Decision making ; Decision trees ; Discriminant analysis ; Emergency communications systems ; Inventories ; Landslides ; Landslides & mudslides ; Machine learning ; Mean ; Mitigation ; Model accuracy ; Modelling ; Performance assessment ; Regression analysis ; Support vector machines ; Susceptibility ; Taiwan ; Variables ; Watershed management ; Watersheds</subject><ispartof>Water (Basel), 2022-03, Vol.14 (5), p.717</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-b24c5b166ad2cca4275fb3a1ae4b33ec766818d55a362699ec726bb79720485d3</citedby><cites>FETCH-LOGICAL-c331t-b24c5b166ad2cca4275fb3a1ae4b33ec766818d55a362699ec726bb79720485d3</cites><orcidid>0000-0003-1983-0859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Wu, Chun-Yi</creatorcontrib><creatorcontrib>Lin, Sheng-Yu</creatorcontrib><title>Performance Assessment of Event-Based Ensemble Landslide Susceptibility Models in Shihmen Watershed, Taiwan</title><title>Water (Basel)</title><description>While multi-year and event-based landslide inventories are both commonly used in landslide susceptibility analysis, most areas lack multi-year landslide inventories, and the analysis results obtained from the use of event-based landslide inventories are very sensitive to the choice of event. Based on 24 event-based landslide inventories for the Shihmen watershed from 1996 to 2015, this study established five event-based single landslide susceptibility models employing logistic regression, random forest, support vector machine, kernel logistic regression, and gradient boosting decision tree methods. The ensemble methods, involving calculating the mean of the susceptibility indexes (PM), median of the susceptibility indexes (PME), weighted mean of the susceptibility indexes (PMW), and committee average of binary susceptibility values (CA) of the five single models were then used to establish four event-based ensemble landslide susceptibility models. After establishing nine landslide susceptibility models, using each inventory from the 24 event-based landslide inventories or a multi-year landslide inventory, we identified the differences in landslide susceptibility maps attributable to the different landslide inventories and modeling methods, and used the area under the receiver operating characteristic curve to assess the accuracy of the models. The results indicated that an ensemble model based on a multi-year inventory can obtain excellent predictive accuracy. The predictive accuracy of multi-year landslide susceptibility models is found to be superior to that of event-based models. In addition, the higher predictive accuracy of ensemble landslide susceptibility models than that of single models implied that these ensemble methods were robust for enhancing the model’s predictive performance in the study area. When employing event-based landslide inventories in modeling, PM ensemble models offer the best predictive ability, according to the Kruskal–Wallis test results. Areas with a high mean susceptibility index and low standard deviation, identified using the 24 PM ensemble models based on different event-based landslide inventories, constitute places where landslide mitigation measures should be prioritized.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Emergency communications systems</subject><subject>Inventories</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Machine learning</subject><subject>Mean</subject><subject>Mitigation</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Performance assessment</subject><subject>Regression analysis</subject><subject>Support vector machines</subject><subject>Susceptibility</subject><subject>Taiwan</subject><subject>Variables</subject><subject>Watershed management</subject><subject>Watersheds</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1LAzEUDKJgqR78BwFPglvztcnusUr9gIpCKx6XbPLWpu5ma7JV-u-NVMT3Dm8YZubBIHRGyYTzklx9UUFyoqg6QCNGFM-EEPTwHz5GpzGuSRpRFkVORuj9GULTh057A3gaI8TYgR9w3-DZZwLZtY5g8cxH6OoW8Fx7G1tnAS-20cBmcLVr3bDDj72FNmLn8WLlVikDv-oBQlyBvcRL7b60P0FHjW4jnP7eMXq5nS1v7rP5093DzXSeGc7pkNVMmLymUmrLjNGCqbypuaYaRM05GCVlQQub55pLJssyMUzWtSoVI6LILR-j833uJvQfW4hDte63waeXFZNcqZIWqZAxmuxVb7qFyvmmH4I2aS10zvQeGpf4aVJzITmhyXCxN5jQxxigqTbBdTrsKkqqn_6rv_75N2-6dwQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wu, Chun-Yi</creator><creator>Lin, Sheng-Yu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1983-0859</orcidid></search><sort><creationdate>20220301</creationdate><title>Performance Assessment of Event-Based Ensemble Landslide Susceptibility Models in Shihmen Watershed, Taiwan</title><author>Wu, Chun-Yi ; Lin, Sheng-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-b24c5b166ad2cca4275fb3a1ae4b33ec766818d55a362699ec726bb79720485d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Emergency communications systems</topic><topic>Inventories</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Machine learning</topic><topic>Mean</topic><topic>Mitigation</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Performance assessment</topic><topic>Regression analysis</topic><topic>Support vector machines</topic><topic>Susceptibility</topic><topic>Taiwan</topic><topic>Variables</topic><topic>Watershed management</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chun-Yi</creatorcontrib><creatorcontrib>Lin, Sheng-Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chun-Yi</au><au>Lin, Sheng-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Assessment of Event-Based Ensemble Landslide Susceptibility Models in Shihmen Watershed, Taiwan</atitle><jtitle>Water (Basel)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>717</spage><pages>717-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>While multi-year and event-based landslide inventories are both commonly used in landslide susceptibility analysis, most areas lack multi-year landslide inventories, and the analysis results obtained from the use of event-based landslide inventories are very sensitive to the choice of event. Based on 24 event-based landslide inventories for the Shihmen watershed from 1996 to 2015, this study established five event-based single landslide susceptibility models employing logistic regression, random forest, support vector machine, kernel logistic regression, and gradient boosting decision tree methods. The ensemble methods, involving calculating the mean of the susceptibility indexes (PM), median of the susceptibility indexes (PME), weighted mean of the susceptibility indexes (PMW), and committee average of binary susceptibility values (CA) of the five single models were then used to establish four event-based ensemble landslide susceptibility models. After establishing nine landslide susceptibility models, using each inventory from the 24 event-based landslide inventories or a multi-year landslide inventory, we identified the differences in landslide susceptibility maps attributable to the different landslide inventories and modeling methods, and used the area under the receiver operating characteristic curve to assess the accuracy of the models. The results indicated that an ensemble model based on a multi-year inventory can obtain excellent predictive accuracy. The predictive accuracy of multi-year landslide susceptibility models is found to be superior to that of event-based models. In addition, the higher predictive accuracy of ensemble landslide susceptibility models than that of single models implied that these ensemble methods were robust for enhancing the model’s predictive performance in the study area. When employing event-based landslide inventories in modeling, PM ensemble models offer the best predictive ability, according to the Kruskal–Wallis test results. Areas with a high mean susceptibility index and low standard deviation, identified using the 24 PM ensemble models based on different event-based landslide inventories, constitute places where landslide mitigation measures should be prioritized.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w14050717</doi><orcidid>https://orcid.org/0000-0003-1983-0859</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2022-03, Vol.14 (5), p.717 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2637791807 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Algorithms Decision making Decision trees Discriminant analysis Emergency communications systems Inventories Landslides Landslides & mudslides Machine learning Mean Mitigation Model accuracy Modelling Performance assessment Regression analysis Support vector machines Susceptibility Taiwan Variables Watershed management Watersheds |
title | Performance Assessment of Event-Based Ensemble Landslide Susceptibility Models in Shihmen Watershed, Taiwan |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Assessment%20of%20Event-Based%20Ensemble%20Landslide%20Susceptibility%20Models%20in%20Shihmen%20Watershed,%20Taiwan&rft.jtitle=Water%20(Basel)&rft.au=Wu,%20Chun-Yi&rft.date=2022-03-01&rft.volume=14&rft.issue=5&rft.spage=717&rft.pages=717-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w14050717&rft_dat=%3Cgale_proqu%3EA791346301%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637791807&rft_id=info:pmid/&rft_galeid=A791346301&rfr_iscdi=true |