Suppressing charge recombination in planar perovskite solar cells by using SnO2/TiO2 nanocomposite as electron transfer layer

Hybrid perovskite solar cells (PSCs) have been paid great attention owing to their excellent photovoltaic properties. However, the presence of charge recombination at the interface of the electron transport layer (ETL)/perovskite hinders the performance of perovskite solar cells, preventing them fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-03, Vol.120 (10)
Hauptverfasser: Li, Hongbing, Liu, Gang, Chen, Hanyue, Du, Wenjuan, Ke, Lili, Li, Hongxing, Zhou, Conghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Applied physics letters
container_volume 120
creator Li, Hongbing
Liu, Gang
Chen, Hanyue
Du, Wenjuan
Ke, Lili
Li, Hongxing
Zhou, Conghua
description Hybrid perovskite solar cells (PSCs) have been paid great attention owing to their excellent photovoltaic properties. However, the presence of charge recombination at the interface of the electron transport layer (ETL)/perovskite hinders the performance of perovskite solar cells, preventing them from reaching the Shockley–Queisser limit. Herein, the SnO2/TiO2 nanoparticles (NPs) composite (S/T-NC) ETL is developed by adopting a simple method at low temperature and applied into planar PSCs. Our results show that the maximum power conversion efficiency of PSCs based on the S/T-NC ETL is 20.51% with a VOC of 1.09 V, a JSC of 24.15 mA/cm2, and a fill factor of 77.84%, much higher than that for both SnO2 NPs based PSCs (18.19%) and TiO2 NPs based PSCs (17.81%). Further analysis reveals that the mixing of TiO2 and SnO2 can improve film quality and reduce trap density, thus, suppressing charge recombination and improving stability. These findings prove that the use of SnO2/TiO2 composite ETL is an effective way to further improve the performance for planar PSCs.
doi_str_mv 10.1063/5.0079907
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637783351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637783351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-b7118eb47c4248e4962108d47b720f2dba2c4f76d1b3a13f407107249e9ff67e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8K2-djd7B6l-AVCD63nJZud1NRtsibbQg_-d9MP9CB4GmZ45hnmReiakhElOR9nI0JEWRJxggaUCJFwSotTNCCE8CQvM3qOLkJYxjZjnA_Q12zddR5CMHaB1bv0C8AelFvVxsreOIuNxV0rrfS4A-824cP0gINr40BB2wZcb_F6vz6zUzaemynDVloXHZ0LO1gGDC2o3kdb76UNGjxu5Rb8JTrTsg1wdaxD9Pb4MJ88J6_Tp5fJ_WuiWCb6pBbxCahToVKWFpCWOaOkaFJRC0Y0a2rJVKpF3tCaS8p1SkT8naUllFrnAvgQ3Ry8nXefawh9tXRrb-PJiuVciILzjEbq9kAp70LwoKvOm5X024qSapdulVXHdCN7d2CDMv0-qB944_wvWHWN_g_-a_4GdXWJrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637783351</pqid></control><display><type>article</type><title>Suppressing charge recombination in planar perovskite solar cells by using SnO2/TiO2 nanocomposite as electron transfer layer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Hongbing ; Liu, Gang ; Chen, Hanyue ; Du, Wenjuan ; Ke, Lili ; Li, Hongxing ; Zhou, Conghua</creator><creatorcontrib>Li, Hongbing ; Liu, Gang ; Chen, Hanyue ; Du, Wenjuan ; Ke, Lili ; Li, Hongxing ; Zhou, Conghua</creatorcontrib><description>Hybrid perovskite solar cells (PSCs) have been paid great attention owing to their excellent photovoltaic properties. However, the presence of charge recombination at the interface of the electron transport layer (ETL)/perovskite hinders the performance of perovskite solar cells, preventing them from reaching the Shockley–Queisser limit. Herein, the SnO2/TiO2 nanoparticles (NPs) composite (S/T-NC) ETL is developed by adopting a simple method at low temperature and applied into planar PSCs. Our results show that the maximum power conversion efficiency of PSCs based on the S/T-NC ETL is 20.51% with a VOC of 1.09 V, a JSC of 24.15 mA/cm2, and a fill factor of 77.84%, much higher than that for both SnO2 NPs based PSCs (18.19%) and TiO2 NPs based PSCs (17.81%). Further analysis reveals that the mixing of TiO2 and SnO2 can improve film quality and reduce trap density, thus, suppressing charge recombination and improving stability. These findings prove that the use of SnO2/TiO2 composite ETL is an effective way to further improve the performance for planar PSCs.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0079907</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Charge density ; Electron transfer ; Electron transport ; Energy conversion efficiency ; Low temperature ; Maximum power ; Nanocomposites ; Nanoparticles ; Performance enhancement ; Perovskites ; Photovoltaic cells ; Solar cells ; Tin dioxide ; Titanium dioxide</subject><ispartof>Applied physics letters, 2022-03, Vol.120 (10)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-b7118eb47c4248e4962108d47b720f2dba2c4f76d1b3a13f407107249e9ff67e3</citedby><cites>FETCH-LOGICAL-c257t-b7118eb47c4248e4962108d47b720f2dba2c4f76d1b3a13f407107249e9ff67e3</cites><orcidid>0000-0002-1906-494X ; 0000-0002-7565-9016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0079907$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Li, Hongbing</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Chen, Hanyue</creatorcontrib><creatorcontrib>Du, Wenjuan</creatorcontrib><creatorcontrib>Ke, Lili</creatorcontrib><creatorcontrib>Li, Hongxing</creatorcontrib><creatorcontrib>Zhou, Conghua</creatorcontrib><title>Suppressing charge recombination in planar perovskite solar cells by using SnO2/TiO2 nanocomposite as electron transfer layer</title><title>Applied physics letters</title><description>Hybrid perovskite solar cells (PSCs) have been paid great attention owing to their excellent photovoltaic properties. However, the presence of charge recombination at the interface of the electron transport layer (ETL)/perovskite hinders the performance of perovskite solar cells, preventing them from reaching the Shockley–Queisser limit. Herein, the SnO2/TiO2 nanoparticles (NPs) composite (S/T-NC) ETL is developed by adopting a simple method at low temperature and applied into planar PSCs. Our results show that the maximum power conversion efficiency of PSCs based on the S/T-NC ETL is 20.51% with a VOC of 1.09 V, a JSC of 24.15 mA/cm2, and a fill factor of 77.84%, much higher than that for both SnO2 NPs based PSCs (18.19%) and TiO2 NPs based PSCs (17.81%). Further analysis reveals that the mixing of TiO2 and SnO2 can improve film quality and reduce trap density, thus, suppressing charge recombination and improving stability. These findings prove that the use of SnO2/TiO2 composite ETL is an effective way to further improve the performance for planar PSCs.</description><subject>Applied physics</subject><subject>Charge density</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Low temperature</subject><subject>Maximum power</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Tin dioxide</subject><subject>Titanium dioxide</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8K2-djd7B6l-AVCD63nJZud1NRtsibbQg_-d9MP9CB4GmZ45hnmReiakhElOR9nI0JEWRJxggaUCJFwSotTNCCE8CQvM3qOLkJYxjZjnA_Q12zddR5CMHaB1bv0C8AelFvVxsreOIuNxV0rrfS4A-824cP0gINr40BB2wZcb_F6vz6zUzaemynDVloXHZ0LO1gGDC2o3kdb76UNGjxu5Rb8JTrTsg1wdaxD9Pb4MJ88J6_Tp5fJ_WuiWCb6pBbxCahToVKWFpCWOaOkaFJRC0Y0a2rJVKpF3tCaS8p1SkT8naUllFrnAvgQ3Ry8nXefawh9tXRrb-PJiuVciILzjEbq9kAp70LwoKvOm5X024qSapdulVXHdCN7d2CDMv0-qB944_wvWHWN_g_-a_4GdXWJrQ</recordid><startdate>20220307</startdate><enddate>20220307</enddate><creator>Li, Hongbing</creator><creator>Liu, Gang</creator><creator>Chen, Hanyue</creator><creator>Du, Wenjuan</creator><creator>Ke, Lili</creator><creator>Li, Hongxing</creator><creator>Zhou, Conghua</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1906-494X</orcidid><orcidid>https://orcid.org/0000-0002-7565-9016</orcidid></search><sort><creationdate>20220307</creationdate><title>Suppressing charge recombination in planar perovskite solar cells by using SnO2/TiO2 nanocomposite as electron transfer layer</title><author>Li, Hongbing ; Liu, Gang ; Chen, Hanyue ; Du, Wenjuan ; Ke, Lili ; Li, Hongxing ; Zhou, Conghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-b7118eb47c4248e4962108d47b720f2dba2c4f76d1b3a13f407107249e9ff67e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Charge density</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Low temperature</topic><topic>Maximum power</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Tin dioxide</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongbing</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Chen, Hanyue</creatorcontrib><creatorcontrib>Du, Wenjuan</creatorcontrib><creatorcontrib>Ke, Lili</creatorcontrib><creatorcontrib>Li, Hongxing</creatorcontrib><creatorcontrib>Zhou, Conghua</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongbing</au><au>Liu, Gang</au><au>Chen, Hanyue</au><au>Du, Wenjuan</au><au>Ke, Lili</au><au>Li, Hongxing</au><au>Zhou, Conghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing charge recombination in planar perovskite solar cells by using SnO2/TiO2 nanocomposite as electron transfer layer</atitle><jtitle>Applied physics letters</jtitle><date>2022-03-07</date><risdate>2022</risdate><volume>120</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Hybrid perovskite solar cells (PSCs) have been paid great attention owing to their excellent photovoltaic properties. However, the presence of charge recombination at the interface of the electron transport layer (ETL)/perovskite hinders the performance of perovskite solar cells, preventing them from reaching the Shockley–Queisser limit. Herein, the SnO2/TiO2 nanoparticles (NPs) composite (S/T-NC) ETL is developed by adopting a simple method at low temperature and applied into planar PSCs. Our results show that the maximum power conversion efficiency of PSCs based on the S/T-NC ETL is 20.51% with a VOC of 1.09 V, a JSC of 24.15 mA/cm2, and a fill factor of 77.84%, much higher than that for both SnO2 NPs based PSCs (18.19%) and TiO2 NPs based PSCs (17.81%). Further analysis reveals that the mixing of TiO2 and SnO2 can improve film quality and reduce trap density, thus, suppressing charge recombination and improving stability. These findings prove that the use of SnO2/TiO2 composite ETL is an effective way to further improve the performance for planar PSCs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0079907</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1906-494X</orcidid><orcidid>https://orcid.org/0000-0002-7565-9016</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-03, Vol.120 (10)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2637783351
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Charge density
Electron transfer
Electron transport
Energy conversion efficiency
Low temperature
Maximum power
Nanocomposites
Nanoparticles
Performance enhancement
Perovskites
Photovoltaic cells
Solar cells
Tin dioxide
Titanium dioxide
title Suppressing charge recombination in planar perovskite solar cells by using SnO2/TiO2 nanocomposite as electron transfer layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20charge%20recombination%20in%20planar%20perovskite%20solar%20cells%20by%20using%20SnO2/TiO2%20nanocomposite%20as%20electron%20transfer%20layer&rft.jtitle=Applied%20physics%20letters&rft.au=Li,%20Hongbing&rft.date=2022-03-07&rft.volume=120&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0079907&rft_dat=%3Cproquest_cross%3E2637783351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637783351&rft_id=info:pmid/&rfr_iscdi=true