Hollow nanostructure boosts the surface capacitive charge storage of NiCo-LDH derived from metal-organic framework for high performance asymmetric supercapacitor
•Two Ni Co-LDH nanostructures (hollow nanocage and sea urchin) were obtained by tuning the reaction temperature.•Hollow Ni Co-LDH exhibits an enhanced specific capacitance and rate capability than that of sea urchin shape product.•A much more capacitive charge storage behavior of hollow Ni Co-LDH th...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2022-03, Vol.896, p.163019, Article 163019 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 163019 |
container_title | Journal of alloys and compounds |
container_volume | 896 |
creator | Zhang, Huifang Yan, Bing Zhao, Heming Qi, Juncheng Zhou, Chungui Peng, Zhiling Han, Jing |
description | •Two Ni Co-LDH nanostructures (hollow nanocage and sea urchin) were obtained by tuning the reaction temperature.•Hollow Ni Co-LDH exhibits an enhanced specific capacitance and rate capability than that of sea urchin shape product.•A much more capacitive charge storage behavior of hollow Ni Co-LDH than sea urchin-shaped product is demonstrated.
Layered double hydroxide (LDH) has great potential as advanced electrode material for supercapacitor. In this paper, by tuning the reaction temperature, two Ni Co-LDH nanostructures (hollow nanocage and sea urchin) were synthesized through the hydrolysis etching process of ZIF-67 crystals and Ni2+ ions. It has been found that the morphology of the electrode material has a great influence on the electrochemical performance and analysis the reason of this behavior is essential for understanding the morphology-related electrochemical performance. Here, a much more capacitive charge storage behavior of hollow Ni Co-LDH than that of sea urchin-shaped product is demonstrated by electrochemical kinetic analysis. The higher capacitive behavior of hollow Ni Co-LDH suggests a rapid surface redox reaction during the electrochemical process, which will lead to excellent electrochemical properties. An asymmetric supercapacitor assembled using hollow NiCo-LDH as the positive electrode displays a high energy density of 88.6 Wh kg−1 at 749.9 W kg−1, further demonstrating its great application potential. These results provide insights into the reasons for the excellent electrochemical performance of hollow nanostructure. |
doi_str_mv | 10.1016/j.jallcom.2021.163019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637717249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821044297</els_id><sourcerecordid>2637717249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-cb9532917bd0bad17f5327b9055e864713c990d16f3cfa9993233d883a744c053</originalsourceid><addsrcrecordid>eNqFUctq3DAUFSGFTtJ8QkGQtaeSZVvWKoRJ2ikM7aZZC1mWZuTY1uRKTsjn9E97w8y-q_s6Dy6HkK-crTnjzbdhPZhxtHFal6zka94IxtUFWfFWiqJqGnVJVkyVddGKtv1MrlIaGEOI4CvydxvHMb7R2cwxZVhsXsDRLuKQaD44mhbwxjpqzdHYkMMrtgcDe7zkCAZr9PRX2MRi97ClvQNE9NRDnOjkshmLCHszB4srM7m3CM_UR6CHsD_QowPsJzOjvknvExIAkWnBw9kvwhfyyZsxuZtzvSZP3x__bLbF7vePn5v7XWGFkLmwnapFqbjsetaZnkuPo-wUq2vXNpXkwirFet54Yb1RSolSiL5thZFVZVktrsntSfcI8WVxKeshLjCjpS4bISWXZaUQVZ9QFmJK4Lw-QpgMvGvO9EcaetDnNPRHGvqUBvLuTjyHL7wGBzrZ4PDxPoCzWfcx_EfhH6k2mQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637717249</pqid></control><display><type>article</type><title>Hollow nanostructure boosts the surface capacitive charge storage of NiCo-LDH derived from metal-organic framework for high performance asymmetric supercapacitor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Huifang ; Yan, Bing ; Zhao, Heming ; Qi, Juncheng ; Zhou, Chungui ; Peng, Zhiling ; Han, Jing</creator><creatorcontrib>Zhang, Huifang ; Yan, Bing ; Zhao, Heming ; Qi, Juncheng ; Zhou, Chungui ; Peng, Zhiling ; Han, Jing</creatorcontrib><description>•Two Ni Co-LDH nanostructures (hollow nanocage and sea urchin) were obtained by tuning the reaction temperature.•Hollow Ni Co-LDH exhibits an enhanced specific capacitance and rate capability than that of sea urchin shape product.•A much more capacitive charge storage behavior of hollow Ni Co-LDH than sea urchin-shaped product is demonstrated.
Layered double hydroxide (LDH) has great potential as advanced electrode material for supercapacitor. In this paper, by tuning the reaction temperature, two Ni Co-LDH nanostructures (hollow nanocage and sea urchin) were synthesized through the hydrolysis etching process of ZIF-67 crystals and Ni2+ ions. It has been found that the morphology of the electrode material has a great influence on the electrochemical performance and analysis the reason of this behavior is essential for understanding the morphology-related electrochemical performance. Here, a much more capacitive charge storage behavior of hollow Ni Co-LDH than that of sea urchin-shaped product is demonstrated by electrochemical kinetic analysis. The higher capacitive behavior of hollow Ni Co-LDH suggests a rapid surface redox reaction during the electrochemical process, which will lead to excellent electrochemical properties. An asymmetric supercapacitor assembled using hollow NiCo-LDH as the positive electrode displays a high energy density of 88.6 Wh kg−1 at 749.9 W kg−1, further demonstrating its great application potential. These results provide insights into the reasons for the excellent electrochemical performance of hollow nanostructure.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.163019</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Asymmetric supercapacitor ; Asymmetry ; Capacitive ; Electrochemical analysis ; Electrode materials ; Electrodes ; Flux density ; Hollow ; Hydroxides ; Intermetallic compounds ; Metal-organic frameworks ; Morphology ; Nanostructure ; NiCo-LDH ; Redox reactions ; Supercapacitors ; ZIF-67</subject><ispartof>Journal of alloys and compounds, 2022-03, Vol.896, p.163019, Article 163019</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 10, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-cb9532917bd0bad17f5327b9055e864713c990d16f3cfa9993233d883a744c053</citedby><cites>FETCH-LOGICAL-c337t-cb9532917bd0bad17f5327b9055e864713c990d16f3cfa9993233d883a744c053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2021.163019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Huifang</creatorcontrib><creatorcontrib>Yan, Bing</creatorcontrib><creatorcontrib>Zhao, Heming</creatorcontrib><creatorcontrib>Qi, Juncheng</creatorcontrib><creatorcontrib>Zhou, Chungui</creatorcontrib><creatorcontrib>Peng, Zhiling</creatorcontrib><creatorcontrib>Han, Jing</creatorcontrib><title>Hollow nanostructure boosts the surface capacitive charge storage of NiCo-LDH derived from metal-organic framework for high performance asymmetric supercapacitor</title><title>Journal of alloys and compounds</title><description>•Two Ni Co-LDH nanostructures (hollow nanocage and sea urchin) were obtained by tuning the reaction temperature.•Hollow Ni Co-LDH exhibits an enhanced specific capacitance and rate capability than that of sea urchin shape product.•A much more capacitive charge storage behavior of hollow Ni Co-LDH than sea urchin-shaped product is demonstrated.
Layered double hydroxide (LDH) has great potential as advanced electrode material for supercapacitor. In this paper, by tuning the reaction temperature, two Ni Co-LDH nanostructures (hollow nanocage and sea urchin) were synthesized through the hydrolysis etching process of ZIF-67 crystals and Ni2+ ions. It has been found that the morphology of the electrode material has a great influence on the electrochemical performance and analysis the reason of this behavior is essential for understanding the morphology-related electrochemical performance. Here, a much more capacitive charge storage behavior of hollow Ni Co-LDH than that of sea urchin-shaped product is demonstrated by electrochemical kinetic analysis. The higher capacitive behavior of hollow Ni Co-LDH suggests a rapid surface redox reaction during the electrochemical process, which will lead to excellent electrochemical properties. An asymmetric supercapacitor assembled using hollow NiCo-LDH as the positive electrode displays a high energy density of 88.6 Wh kg−1 at 749.9 W kg−1, further demonstrating its great application potential. These results provide insights into the reasons for the excellent electrochemical performance of hollow nanostructure.</description><subject>Asymmetric supercapacitor</subject><subject>Asymmetry</subject><subject>Capacitive</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Flux density</subject><subject>Hollow</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Metal-organic frameworks</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>NiCo-LDH</subject><subject>Redox reactions</subject><subject>Supercapacitors</subject><subject>ZIF-67</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUctq3DAUFSGFTtJ8QkGQtaeSZVvWKoRJ2ikM7aZZC1mWZuTY1uRKTsjn9E97w8y-q_s6Dy6HkK-crTnjzbdhPZhxtHFal6zka94IxtUFWfFWiqJqGnVJVkyVddGKtv1MrlIaGEOI4CvydxvHMb7R2cwxZVhsXsDRLuKQaD44mhbwxjpqzdHYkMMrtgcDe7zkCAZr9PRX2MRi97ClvQNE9NRDnOjkshmLCHszB4srM7m3CM_UR6CHsD_QowPsJzOjvknvExIAkWnBw9kvwhfyyZsxuZtzvSZP3x__bLbF7vePn5v7XWGFkLmwnapFqbjsetaZnkuPo-wUq2vXNpXkwirFet54Yb1RSolSiL5thZFVZVktrsntSfcI8WVxKeshLjCjpS4bISWXZaUQVZ9QFmJK4Lw-QpgMvGvO9EcaetDnNPRHGvqUBvLuTjyHL7wGBzrZ4PDxPoCzWfcx_EfhH6k2mQg</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Zhang, Huifang</creator><creator>Yan, Bing</creator><creator>Zhao, Heming</creator><creator>Qi, Juncheng</creator><creator>Zhou, Chungui</creator><creator>Peng, Zhiling</creator><creator>Han, Jing</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220310</creationdate><title>Hollow nanostructure boosts the surface capacitive charge storage of NiCo-LDH derived from metal-organic framework for high performance asymmetric supercapacitor</title><author>Zhang, Huifang ; Yan, Bing ; Zhao, Heming ; Qi, Juncheng ; Zhou, Chungui ; Peng, Zhiling ; Han, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-cb9532917bd0bad17f5327b9055e864713c990d16f3cfa9993233d883a744c053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymmetric supercapacitor</topic><topic>Asymmetry</topic><topic>Capacitive</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Flux density</topic><topic>Hollow</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Metal-organic frameworks</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>NiCo-LDH</topic><topic>Redox reactions</topic><topic>Supercapacitors</topic><topic>ZIF-67</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huifang</creatorcontrib><creatorcontrib>Yan, Bing</creatorcontrib><creatorcontrib>Zhao, Heming</creatorcontrib><creatorcontrib>Qi, Juncheng</creatorcontrib><creatorcontrib>Zhou, Chungui</creatorcontrib><creatorcontrib>Peng, Zhiling</creatorcontrib><creatorcontrib>Han, Jing</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huifang</au><au>Yan, Bing</au><au>Zhao, Heming</au><au>Qi, Juncheng</au><au>Zhou, Chungui</au><au>Peng, Zhiling</au><au>Han, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow nanostructure boosts the surface capacitive charge storage of NiCo-LDH derived from metal-organic framework for high performance asymmetric supercapacitor</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-03-10</date><risdate>2022</risdate><volume>896</volume><spage>163019</spage><pages>163019-</pages><artnum>163019</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•Two Ni Co-LDH nanostructures (hollow nanocage and sea urchin) were obtained by tuning the reaction temperature.•Hollow Ni Co-LDH exhibits an enhanced specific capacitance and rate capability than that of sea urchin shape product.•A much more capacitive charge storage behavior of hollow Ni Co-LDH than sea urchin-shaped product is demonstrated.
Layered double hydroxide (LDH) has great potential as advanced electrode material for supercapacitor. In this paper, by tuning the reaction temperature, two Ni Co-LDH nanostructures (hollow nanocage and sea urchin) were synthesized through the hydrolysis etching process of ZIF-67 crystals and Ni2+ ions. It has been found that the morphology of the electrode material has a great influence on the electrochemical performance and analysis the reason of this behavior is essential for understanding the morphology-related electrochemical performance. Here, a much more capacitive charge storage behavior of hollow Ni Co-LDH than that of sea urchin-shaped product is demonstrated by electrochemical kinetic analysis. The higher capacitive behavior of hollow Ni Co-LDH suggests a rapid surface redox reaction during the electrochemical process, which will lead to excellent electrochemical properties. An asymmetric supercapacitor assembled using hollow NiCo-LDH as the positive electrode displays a high energy density of 88.6 Wh kg−1 at 749.9 W kg−1, further demonstrating its great application potential. These results provide insights into the reasons for the excellent electrochemical performance of hollow nanostructure.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.163019</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2022-03, Vol.896, p.163019, Article 163019 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2637717249 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Asymmetric supercapacitor Asymmetry Capacitive Electrochemical analysis Electrode materials Electrodes Flux density Hollow Hydroxides Intermetallic compounds Metal-organic frameworks Morphology Nanostructure NiCo-LDH Redox reactions Supercapacitors ZIF-67 |
title | Hollow nanostructure boosts the surface capacitive charge storage of NiCo-LDH derived from metal-organic framework for high performance asymmetric supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20nanostructure%20boosts%20the%20surface%20capacitive%20charge%20storage%20of%20NiCo-LDH%20derived%20from%20metal-organic%20framework%20for%20high%20performance%20asymmetric%20supercapacitor&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zhang,%20Huifang&rft.date=2022-03-10&rft.volume=896&rft.spage=163019&rft.pages=163019-&rft.artnum=163019&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.163019&rft_dat=%3Cproquest_cross%3E2637717249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637717249&rft_id=info:pmid/&rft_els_id=S0925838821044297&rfr_iscdi=true |