Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature

The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics 2021-12, Vol.56 (8), p.1094-1106
1. Verfasser: Goncharov, V. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 8
container_start_page 1094
container_title Fluid dynamics
container_volume 56
creator Goncharov, V. K.
description The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue in this respect is the condition at the interface with water, where crystallization occurs, as a result of which heat is released and the thickness of the ice increases (Stefan’s condition). This problem was solved by parameterization of the dependence of the ice-freezing rate on air temperature and ice thickness on the basis of observations of the ice cover of Siberian rivers. The obtained analytical solution is compared with field measurements of temperature in the ice cover and the growth rate of its thickness on the Amur River.
doi_str_mv 10.1134/S0015462821080061
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2637652174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718421976</galeid><sourcerecordid>A718421976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-cc1bb869c635dfeedd7b62c48bcf861970a75a43012d5d6a9aaa77a6f8082c203</originalsourceid><addsrcrecordid>eNp1kFFLwzAQgIMoOKc_wLeBz9VL2ibp4xhOBxMfNn0taXLdOtamJq3ivzelgohIHi7cfV8ud4RcU7ilNE7uNgA0TTiTjIIE4PSETGgq4kimIE7JZChHQ_2cXHh_AIBMcDYhmydr8Fg1u9nSod9_qA7dbKUxWtj3cNti3aJTXe9w1jcmZF6V-xzweVdb3-7RVTqaV7_IS3JWqqPHq-84JS_L--3iMVo_P6wW83WkYxBdpDUtCskzzePUlIjGiIIznchCl5LTTIASqUpioMykhqtMKSWE4qUEyTSDeEpuxndbZ9969F1-sL1rQsuc8VjwlFGRBOp2pHbqiHnVlLZzSodjsK60bbCsQn4uqExYaMqDQEdBO-u9wzJvXVWHsXMK-bDs_M-yg8NGxwe22aH7-cr_0hfK9oCe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637652174</pqid></control><display><type>article</type><title>Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature</title><source>Springer Journals</source><creator>Goncharov, V. K.</creator><creatorcontrib>Goncharov, V. K.</creatorcontrib><description>The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue in this respect is the condition at the interface with water, where crystallization occurs, as a result of which heat is released and the thickness of the ice increases (Stefan’s condition). This problem was solved by parameterization of the dependence of the ice-freezing rate on air temperature and ice thickness on the basis of observations of the ice cover of Siberian rivers. The obtained analytical solution is compared with field measurements of temperature in the ice cover and the growth rate of its thickness on the Amur River.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462821080061</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Air temperature ; Analysis ; Atmospheric models ; Boundary conditions ; Classical and Continuum Physics ; Classical Mechanics ; Conduction heating ; Crystallization ; Engineering Fluid Dynamics ; Exact solutions ; Fluid- and Aerodynamics ; Freezing ; Fresh water ; Ice cover ; Ice formation ; Parameterization ; Physics ; Physics and Astronomy ; Temperature distribution ; Thickness ; Water masses</subject><ispartof>Fluid dynamics, 2021-12, Vol.56 (8), p.1094-1106</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0015-4628, Fluid Dynamics, 2021, Vol. 56, No. 8, pp. 1094–1106. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2022, published in Prikladnaya Matematika i Mekhanika, 2022, Vol. 86, No. 1, pp. 105–120.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-cc1bb869c635dfeedd7b62c48bcf861970a75a43012d5d6a9aaa77a6f8082c203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462821080061$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462821080061$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Goncharov, V. K.</creatorcontrib><title>Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue in this respect is the condition at the interface with water, where crystallization occurs, as a result of which heat is released and the thickness of the ice increases (Stefan’s condition). This problem was solved by parameterization of the dependence of the ice-freezing rate on air temperature and ice thickness on the basis of observations of the ice cover of Siberian rivers. The obtained analytical solution is compared with field measurements of temperature in the ice cover and the growth rate of its thickness on the Amur River.</description><subject>Air temperature</subject><subject>Analysis</subject><subject>Atmospheric models</subject><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Conduction heating</subject><subject>Crystallization</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact solutions</subject><subject>Fluid- and Aerodynamics</subject><subject>Freezing</subject><subject>Fresh water</subject><subject>Ice cover</subject><subject>Ice formation</subject><subject>Parameterization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature distribution</subject><subject>Thickness</subject><subject>Water masses</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQgIMoOKc_wLeBz9VL2ibp4xhOBxMfNn0taXLdOtamJq3ivzelgohIHi7cfV8ud4RcU7ilNE7uNgA0TTiTjIIE4PSETGgq4kimIE7JZChHQ_2cXHh_AIBMcDYhmydr8Fg1u9nSod9_qA7dbKUxWtj3cNti3aJTXe9w1jcmZF6V-xzweVdb3-7RVTqaV7_IS3JWqqPHq-84JS_L--3iMVo_P6wW83WkYxBdpDUtCskzzePUlIjGiIIznchCl5LTTIASqUpioMykhqtMKSWE4qUEyTSDeEpuxndbZ9969F1-sL1rQsuc8VjwlFGRBOp2pHbqiHnVlLZzSodjsK60bbCsQn4uqExYaMqDQEdBO-u9wzJvXVWHsXMK-bDs_M-yg8NGxwe22aH7-cr_0hfK9oCe</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Goncharov, V. K.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature</title><author>Goncharov, V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-cc1bb869c635dfeedd7b62c48bcf861970a75a43012d5d6a9aaa77a6f8082c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Analysis</topic><topic>Atmospheric models</topic><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Conduction heating</topic><topic>Crystallization</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact solutions</topic><topic>Fluid- and Aerodynamics</topic><topic>Freezing</topic><topic>Fresh water</topic><topic>Ice cover</topic><topic>Ice formation</topic><topic>Parameterization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature distribution</topic><topic>Thickness</topic><topic>Water masses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncharov, V. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goncharov, V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>56</volume><issue>8</issue><spage>1094</spage><epage>1106</epage><pages>1094-1106</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue in this respect is the condition at the interface with water, where crystallization occurs, as a result of which heat is released and the thickness of the ice increases (Stefan’s condition). This problem was solved by parameterization of the dependence of the ice-freezing rate on air temperature and ice thickness on the basis of observations of the ice cover of Siberian rivers. The obtained analytical solution is compared with field measurements of temperature in the ice cover and the growth rate of its thickness on the Amur River.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0015462821080061</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-4628
ispartof Fluid dynamics, 2021-12, Vol.56 (8), p.1094-1106
issn 0015-4628
1573-8507
language eng
recordid cdi_proquest_journals_2637652174
source Springer Journals
subjects Air temperature
Analysis
Atmospheric models
Boundary conditions
Classical and Continuum Physics
Classical Mechanics
Conduction heating
Crystallization
Engineering Fluid Dynamics
Exact solutions
Fluid- and Aerodynamics
Freezing
Fresh water
Ice cover
Ice formation
Parameterization
Physics
Physics and Astronomy
Temperature distribution
Thickness
Water masses
title Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T18%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Freshwater%20Ice-Cover%20Temperature%20under%20Varying%20Atmospheric-Air%20Temperature&rft.jtitle=Fluid%20dynamics&rft.au=Goncharov,%20V.%20K.&rft.date=2021-12-01&rft.volume=56&rft.issue=8&rft.spage=1094&rft.epage=1106&rft.pages=1094-1106&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462821080061&rft_dat=%3Cgale_proqu%3EA718421976%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637652174&rft_id=info:pmid/&rft_galeid=A718421976&rfr_iscdi=true