Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature
The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue i...
Gespeichert in:
Veröffentlicht in: | Fluid dynamics 2021-12, Vol.56 (8), p.1094-1106 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1106 |
---|---|
container_issue | 8 |
container_start_page | 1094 |
container_title | Fluid dynamics |
container_volume | 56 |
creator | Goncharov, V. K. |
description | The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue in this respect is the condition at the interface with water, where crystallization occurs, as a result of which heat is released and the thickness of the ice increases (Stefan’s condition). This problem was solved by parameterization of the dependence of the ice-freezing rate on air temperature and ice thickness on the basis of observations of the ice cover of Siberian rivers. The obtained analytical solution is compared with field measurements of temperature in the ice cover and the growth rate of its thickness on the Amur River. |
doi_str_mv | 10.1134/S0015462821080061 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2637652174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718421976</galeid><sourcerecordid>A718421976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-cc1bb869c635dfeedd7b62c48bcf861970a75a43012d5d6a9aaa77a6f8082c203</originalsourceid><addsrcrecordid>eNp1kFFLwzAQgIMoOKc_wLeBz9VL2ibp4xhOBxMfNn0taXLdOtamJq3ivzelgohIHi7cfV8ud4RcU7ilNE7uNgA0TTiTjIIE4PSETGgq4kimIE7JZChHQ_2cXHh_AIBMcDYhmydr8Fg1u9nSod9_qA7dbKUxWtj3cNti3aJTXe9w1jcmZF6V-xzweVdb3-7RVTqaV7_IS3JWqqPHq-84JS_L--3iMVo_P6wW83WkYxBdpDUtCskzzePUlIjGiIIznchCl5LTTIASqUpioMykhqtMKSWE4qUEyTSDeEpuxndbZ9969F1-sL1rQsuc8VjwlFGRBOp2pHbqiHnVlLZzSodjsK60bbCsQn4uqExYaMqDQEdBO-u9wzJvXVWHsXMK-bDs_M-yg8NGxwe22aH7-cr_0hfK9oCe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637652174</pqid></control><display><type>article</type><title>Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature</title><source>Springer Journals</source><creator>Goncharov, V. K.</creator><creatorcontrib>Goncharov, V. K.</creatorcontrib><description>The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue in this respect is the condition at the interface with water, where crystallization occurs, as a result of which heat is released and the thickness of the ice increases (Stefan’s condition). This problem was solved by parameterization of the dependence of the ice-freezing rate on air temperature and ice thickness on the basis of observations of the ice cover of Siberian rivers. The obtained analytical solution is compared with field measurements of temperature in the ice cover and the growth rate of its thickness on the Amur River.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462821080061</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Air temperature ; Analysis ; Atmospheric models ; Boundary conditions ; Classical and Continuum Physics ; Classical Mechanics ; Conduction heating ; Crystallization ; Engineering Fluid Dynamics ; Exact solutions ; Fluid- and Aerodynamics ; Freezing ; Fresh water ; Ice cover ; Ice formation ; Parameterization ; Physics ; Physics and Astronomy ; Temperature distribution ; Thickness ; Water masses</subject><ispartof>Fluid dynamics, 2021-12, Vol.56 (8), p.1094-1106</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0015-4628, Fluid Dynamics, 2021, Vol. 56, No. 8, pp. 1094–1106. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2022, published in Prikladnaya Matematika i Mekhanika, 2022, Vol. 86, No. 1, pp. 105–120.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-cc1bb869c635dfeedd7b62c48bcf861970a75a43012d5d6a9aaa77a6f8082c203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462821080061$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462821080061$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Goncharov, V. K.</creatorcontrib><title>Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue in this respect is the condition at the interface with water, where crystallization occurs, as a result of which heat is released and the thickness of the ice increases (Stefan’s condition). This problem was solved by parameterization of the dependence of the ice-freezing rate on air temperature and ice thickness on the basis of observations of the ice cover of Siberian rivers. The obtained analytical solution is compared with field measurements of temperature in the ice cover and the growth rate of its thickness on the Amur River.</description><subject>Air temperature</subject><subject>Analysis</subject><subject>Atmospheric models</subject><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Conduction heating</subject><subject>Crystallization</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact solutions</subject><subject>Fluid- and Aerodynamics</subject><subject>Freezing</subject><subject>Fresh water</subject><subject>Ice cover</subject><subject>Ice formation</subject><subject>Parameterization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature distribution</subject><subject>Thickness</subject><subject>Water masses</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQgIMoOKc_wLeBz9VL2ibp4xhOBxMfNn0taXLdOtamJq3ivzelgohIHi7cfV8ud4RcU7ilNE7uNgA0TTiTjIIE4PSETGgq4kimIE7JZChHQ_2cXHh_AIBMcDYhmydr8Fg1u9nSod9_qA7dbKUxWtj3cNti3aJTXe9w1jcmZF6V-xzweVdb3-7RVTqaV7_IS3JWqqPHq-84JS_L--3iMVo_P6wW83WkYxBdpDUtCskzzePUlIjGiIIznchCl5LTTIASqUpioMykhqtMKSWE4qUEyTSDeEpuxndbZ9969F1-sL1rQsuc8VjwlFGRBOp2pHbqiHnVlLZzSodjsK60bbCsQn4uqExYaMqDQEdBO-u9wzJvXVWHsXMK-bDs_M-yg8NGxwe22aH7-cr_0hfK9oCe</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Goncharov, V. K.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature</title><author>Goncharov, V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-cc1bb869c635dfeedd7b62c48bcf861970a75a43012d5d6a9aaa77a6f8082c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Analysis</topic><topic>Atmospheric models</topic><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Conduction heating</topic><topic>Crystallization</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact solutions</topic><topic>Fluid- and Aerodynamics</topic><topic>Freezing</topic><topic>Fresh water</topic><topic>Ice cover</topic><topic>Ice formation</topic><topic>Parameterization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature distribution</topic><topic>Thickness</topic><topic>Water masses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncharov, V. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goncharov, V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>56</volume><issue>8</issue><spage>1094</spage><epage>1106</epage><pages>1094-1106</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>The process of temperature field formation in the ice-cover thickness is modeled by the heat-conduction equation, the solution of which required parametrization of boundary conditions at the interface with the atmosphere and water mass, allowing for an analytical solution. The most difficult issue in this respect is the condition at the interface with water, where crystallization occurs, as a result of which heat is released and the thickness of the ice increases (Stefan’s condition). This problem was solved by parameterization of the dependence of the ice-freezing rate on air temperature and ice thickness on the basis of observations of the ice cover of Siberian rivers. The obtained analytical solution is compared with field measurements of temperature in the ice cover and the growth rate of its thickness on the Amur River.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0015462821080061</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-4628 |
ispartof | Fluid dynamics, 2021-12, Vol.56 (8), p.1094-1106 |
issn | 0015-4628 1573-8507 |
language | eng |
recordid | cdi_proquest_journals_2637652174 |
source | Springer Journals |
subjects | Air temperature Analysis Atmospheric models Boundary conditions Classical and Continuum Physics Classical Mechanics Conduction heating Crystallization Engineering Fluid Dynamics Exact solutions Fluid- and Aerodynamics Freezing Fresh water Ice cover Ice formation Parameterization Physics Physics and Astronomy Temperature distribution Thickness Water masses |
title | Modeling Freshwater Ice-Cover Temperature under Varying Atmospheric-Air Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T18%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Freshwater%20Ice-Cover%20Temperature%20under%20Varying%20Atmospheric-Air%20Temperature&rft.jtitle=Fluid%20dynamics&rft.au=Goncharov,%20V.%20K.&rft.date=2021-12-01&rft.volume=56&rft.issue=8&rft.spage=1094&rft.epage=1106&rft.pages=1094-1106&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462821080061&rft_dat=%3Cgale_proqu%3EA718421976%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637652174&rft_id=info:pmid/&rft_galeid=A718421976&rfr_iscdi=true |