Bio-Cyber Interface Parameter Estimation with Neural Network for the Internet of Bio-Nano Things
Recently, there is growing interest in the Internet of Bio-Nano Things (IoBNT) based on biological communication with the advent of communication engineering and nanotechnology. One of the IoBNT's significant challenges is modeling and simulating of bio-cyber interface for linking electromagnet...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2022-03, Vol.123 (2), p.1245-1263 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1263 |
---|---|
container_issue | 2 |
container_start_page | 1245 |
container_title | Wireless personal communications |
container_volume | 123 |
creator | Mohamed, Soha Dong, Jian El-Atty, Saied M. Abd Eissa, Mahmoud A. |
description | Recently, there is growing interest in the Internet of Bio-Nano Things (IoBNT) based on biological communication with the advent of communication engineering and nanotechnology. One of the IoBNT's significant challenges is modeling and simulating of bio-cyber interface for linking electromagnetic signal- based internet to the biochemical signal-based bio-nano-network. Gaining an understanding of the bio-cyber interface is vital for the design of the IoBNT framework. In this paper, an artificial neural network (ANN) approach is proposed for parameter estimation of the bio-cyber interface. This choice's motivation is the complexity of the mathematical model of the bio-cyber interface system and the possibility of using ANN methods in this perspective. The idea in this work is for ANN and mathematical modeling to complement each other. The proposed approach is based on two directions: using a non-linear least square for fitting electro-bio and bio-electro interface model parameters, then applying ANN to the output of the first direction to learn the design behind the model parameters(to acquire the parameter estimator). The research work proves that ANN can learn (train) from the model parameters. Furthermore, the training network can predict the model parameters for a given system. The results show that ANN achieves effective performance for parameter estimation of the bio-cyber interface. Finally,the performance analysis of the proposed bio-cyber interface device is evaluated by employing a pharmacokinetics compartmental model for molecule diffusion over the blood vessel system. |
doi_str_mv | 10.1007/s11277-021-09177-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637587204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637587204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fa48eb06e58f209fb50eb9753a87b1afce04fe2d2c258c7022c1ab9ebc240b243</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKeA52gy-5HdoxY_CqV6qOAtJuuk3dpuapJS-t-buoI3T28G3u8N8wi5FPxacC5vghAgJeMgGK9FmsojMhCFBFZl-dsxGfAaalaCgFNyFsKS84TVMCDvd61jo71BT8ddRG91g_RFe73GtNH7ENu1jq3r6K6NCzrFrderJHHn_Ce1ztO4wB7tMFJn6SFwqjtHZ4u2m4dzcmL1KuDFrw7J68P9bPTEJs-P49HthDWZqCOzOq_Q8BKLygKvrSk4mloWma6kEdo2yHOL8AENFFUjOUAjtKnRNJBzA3k2JFd97sa7ry2GqJZu67t0UkGZyaKSwA8u6F2NdyF4tGrj04N-rwRXhyZV36RKTaqfJlWZoKyHQjJ3c_R_0f9Q32iodts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637587204</pqid></control><display><type>article</type><title>Bio-Cyber Interface Parameter Estimation with Neural Network for the Internet of Bio-Nano Things</title><source>Springer Nature - Complete Springer Journals</source><creator>Mohamed, Soha ; Dong, Jian ; El-Atty, Saied M. Abd ; Eissa, Mahmoud A.</creator><creatorcontrib>Mohamed, Soha ; Dong, Jian ; El-Atty, Saied M. Abd ; Eissa, Mahmoud A.</creatorcontrib><description>Recently, there is growing interest in the Internet of Bio-Nano Things (IoBNT) based on biological communication with the advent of communication engineering and nanotechnology. One of the IoBNT's significant challenges is modeling and simulating of bio-cyber interface for linking electromagnetic signal- based internet to the biochemical signal-based bio-nano-network. Gaining an understanding of the bio-cyber interface is vital for the design of the IoBNT framework. In this paper, an artificial neural network (ANN) approach is proposed for parameter estimation of the bio-cyber interface. This choice's motivation is the complexity of the mathematical model of the bio-cyber interface system and the possibility of using ANN methods in this perspective. The idea in this work is for ANN and mathematical modeling to complement each other. The proposed approach is based on two directions: using a non-linear least square for fitting electro-bio and bio-electro interface model parameters, then applying ANN to the output of the first direction to learn the design behind the model parameters(to acquire the parameter estimator). The research work proves that ANN can learn (train) from the model parameters. Furthermore, the training network can predict the model parameters for a given system. The results show that ANN achieves effective performance for parameter estimation of the bio-cyber interface. Finally,the performance analysis of the proposed bio-cyber interface device is evaluated by employing a pharmacokinetics compartmental model for molecule diffusion over the blood vessel system.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-021-09177-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Blood vessels ; Communications Engineering ; Computer Communication Networks ; Design parameters ; Engineering ; Internet ; Mathematical models ; Networks ; Neural networks ; Parameter estimation ; Signal,Image and Speech Processing</subject><ispartof>Wireless personal communications, 2022-03, Vol.123 (2), p.1245-1263</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fa48eb06e58f209fb50eb9753a87b1afce04fe2d2c258c7022c1ab9ebc240b243</citedby><cites>FETCH-LOGICAL-c319t-fa48eb06e58f209fb50eb9753a87b1afce04fe2d2c258c7022c1ab9ebc240b243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-021-09177-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-021-09177-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Mohamed, Soha</creatorcontrib><creatorcontrib>Dong, Jian</creatorcontrib><creatorcontrib>El-Atty, Saied M. Abd</creatorcontrib><creatorcontrib>Eissa, Mahmoud A.</creatorcontrib><title>Bio-Cyber Interface Parameter Estimation with Neural Network for the Internet of Bio-Nano Things</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Recently, there is growing interest in the Internet of Bio-Nano Things (IoBNT) based on biological communication with the advent of communication engineering and nanotechnology. One of the IoBNT's significant challenges is modeling and simulating of bio-cyber interface for linking electromagnetic signal- based internet to the biochemical signal-based bio-nano-network. Gaining an understanding of the bio-cyber interface is vital for the design of the IoBNT framework. In this paper, an artificial neural network (ANN) approach is proposed for parameter estimation of the bio-cyber interface. This choice's motivation is the complexity of the mathematical model of the bio-cyber interface system and the possibility of using ANN methods in this perspective. The idea in this work is for ANN and mathematical modeling to complement each other. The proposed approach is based on two directions: using a non-linear least square for fitting electro-bio and bio-electro interface model parameters, then applying ANN to the output of the first direction to learn the design behind the model parameters(to acquire the parameter estimator). The research work proves that ANN can learn (train) from the model parameters. Furthermore, the training network can predict the model parameters for a given system. The results show that ANN achieves effective performance for parameter estimation of the bio-cyber interface. Finally,the performance analysis of the proposed bio-cyber interface device is evaluated by employing a pharmacokinetics compartmental model for molecule diffusion over the blood vessel system.</description><subject>Artificial neural networks</subject><subject>Blood vessels</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Internet</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Signal,Image and Speech Processing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKv_gKeA52gy-5HdoxY_CqV6qOAtJuuk3dpuapJS-t-buoI3T28G3u8N8wi5FPxacC5vghAgJeMgGK9FmsojMhCFBFZl-dsxGfAaalaCgFNyFsKS84TVMCDvd61jo71BT8ddRG91g_RFe73GtNH7ENu1jq3r6K6NCzrFrderJHHn_Ce1ztO4wB7tMFJn6SFwqjtHZ4u2m4dzcmL1KuDFrw7J68P9bPTEJs-P49HthDWZqCOzOq_Q8BKLygKvrSk4mloWma6kEdo2yHOL8AENFFUjOUAjtKnRNJBzA3k2JFd97sa7ry2GqJZu67t0UkGZyaKSwA8u6F2NdyF4tGrj04N-rwRXhyZV36RKTaqfJlWZoKyHQjJ3c_R_0f9Q32iodts</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Mohamed, Soha</creator><creator>Dong, Jian</creator><creator>El-Atty, Saied M. Abd</creator><creator>Eissa, Mahmoud A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Bio-Cyber Interface Parameter Estimation with Neural Network for the Internet of Bio-Nano Things</title><author>Mohamed, Soha ; Dong, Jian ; El-Atty, Saied M. Abd ; Eissa, Mahmoud A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fa48eb06e58f209fb50eb9753a87b1afce04fe2d2c258c7022c1ab9ebc240b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Blood vessels</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Internet</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Soha</creatorcontrib><creatorcontrib>Dong, Jian</creatorcontrib><creatorcontrib>El-Atty, Saied M. Abd</creatorcontrib><creatorcontrib>Eissa, Mahmoud A.</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Soha</au><au>Dong, Jian</au><au>El-Atty, Saied M. Abd</au><au>Eissa, Mahmoud A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-Cyber Interface Parameter Estimation with Neural Network for the Internet of Bio-Nano Things</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>123</volume><issue>2</issue><spage>1245</spage><epage>1263</epage><pages>1245-1263</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Recently, there is growing interest in the Internet of Bio-Nano Things (IoBNT) based on biological communication with the advent of communication engineering and nanotechnology. One of the IoBNT's significant challenges is modeling and simulating of bio-cyber interface for linking electromagnetic signal- based internet to the biochemical signal-based bio-nano-network. Gaining an understanding of the bio-cyber interface is vital for the design of the IoBNT framework. In this paper, an artificial neural network (ANN) approach is proposed for parameter estimation of the bio-cyber interface. This choice's motivation is the complexity of the mathematical model of the bio-cyber interface system and the possibility of using ANN methods in this perspective. The idea in this work is for ANN and mathematical modeling to complement each other. The proposed approach is based on two directions: using a non-linear least square for fitting electro-bio and bio-electro interface model parameters, then applying ANN to the output of the first direction to learn the design behind the model parameters(to acquire the parameter estimator). The research work proves that ANN can learn (train) from the model parameters. Furthermore, the training network can predict the model parameters for a given system. The results show that ANN achieves effective performance for parameter estimation of the bio-cyber interface. Finally,the performance analysis of the proposed bio-cyber interface device is evaluated by employing a pharmacokinetics compartmental model for molecule diffusion over the blood vessel system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-021-09177-6</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2022-03, Vol.123 (2), p.1245-1263 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2637587204 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial neural networks Blood vessels Communications Engineering Computer Communication Networks Design parameters Engineering Internet Mathematical models Networks Neural networks Parameter estimation Signal,Image and Speech Processing |
title | Bio-Cyber Interface Parameter Estimation with Neural Network for the Internet of Bio-Nano Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-Cyber%20Interface%20Parameter%20Estimation%20with%20Neural%20Network%20for%20the%20Internet%20of%20Bio-Nano%20Things&rft.jtitle=Wireless%20personal%20communications&rft.au=Mohamed,%20Soha&rft.date=2022-03-01&rft.volume=123&rft.issue=2&rft.spage=1245&rft.epage=1263&rft.pages=1245-1263&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-021-09177-6&rft_dat=%3Cproquest_cross%3E2637587204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637587204&rft_id=info:pmid/&rfr_iscdi=true |