Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties

The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2022-03, Vol.29 (4), p.2699-2709
Hauptverfasser: Cui, Yifan, Zheng, Guolin, Jiang, Zhe, Zhou, Yu, Wang, Qiang, Zhou, Man, Wang, Ping, Yu, Yuanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2709
container_issue 4
container_start_page 2699
container_title Cellulose (London)
container_volume 29
creator Cui, Yifan
Zheng, Guolin
Jiang, Zhe
Zhou, Yu
Wang, Qiang
Zhou, Man
Wang, Ping
Yu, Yuanyuan
description The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic self-assembly) of chitosan (or chitosan quaternary ammonium salt) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), abbreviated to PEDOT:PSS. Chemical structure and microscopic morphology of the cotton fabric coated with PEDOT:PSS were measured using X-ray photoelectron spectroscopy, Raman spectroscopy, Scanning electron micrographs, Fourier transform infrared spectrometer and color strength (K/S value). Electrical conductivity of the fabric changed with the “odd–even” oscillations of K/S value of the cotton fabric. Furthermore, cotton fabric alternately deposited with five cycles reached the highest electrical conductivity (0.335 mS/cm). Meanwhile, the fabric presents excellent UV protection capacity (maximum UPF value of 385.07), which was 24.4 times of pristine cotton fabric (15.76). In addition, cotton fabric strain sensor coated by PEDOT:PSS could effectively detect finger and knee movements of humans, showing a promising prospect in the field of human rehabilitation training, real-time monitoring, and gesture recognition due to its good stability and being highly responsive.
doi_str_mv 10.1007/s10570-022-04431-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637582604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637582604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c85b8d143264b0607b48538414f1d41fd5c1ca20af7f86652290909a094c5e5e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmk8yPO62tCgMttBV3IZNJ6pTpTE1SaV_BpzZtBXeSxYWb75zDPQhdE7glAOmdI8BTiIDSCBiLSbQ9QT3CUxplGX0_RT3Ikzx8x_k5unBuCQB5SkkPfY9kaWslfd21uDPYeau9-pBlo_Fk-DSe3U-mU6w66XUVhvcBMwcJ_qolLh4LrButvO2cDyYKO92YSDqnV2Wzw7KtcO0dnr_hte18APc5-63TravbxX691tbX2l2iMyMbp69-Zx_NR8PZ4CUqxs-vg4ciUjHJfaQyXmYVYTFNWAkJpCXLeJwxwgypGDEVV0RJCtKkJksSTmkO4UnImeKa67iPbo6-Ifpzo50Xy25j2xApaBKnPKMJsEDRI6XCac5qI9a2Xkm7EwTEvnNx7FyEzsWhc7ENovgocgFuF9r-Wf-j-gEv6IXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637582604</pqid></control><display><type>article</type><title>Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cui, Yifan ; Zheng, Guolin ; Jiang, Zhe ; Zhou, Yu ; Wang, Qiang ; Zhou, Man ; Wang, Ping ; Yu, Yuanyuan</creator><creatorcontrib>Cui, Yifan ; Zheng, Guolin ; Jiang, Zhe ; Zhou, Yu ; Wang, Qiang ; Zhou, Man ; Wang, Ping ; Yu, Yuanyuan</creatorcontrib><description>The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic self-assembly) of chitosan (or chitosan quaternary ammonium salt) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), abbreviated to PEDOT:PSS. Chemical structure and microscopic morphology of the cotton fabric coated with PEDOT:PSS were measured using X-ray photoelectron spectroscopy, Raman spectroscopy, Scanning electron micrographs, Fourier transform infrared spectrometer and color strength (K/S value). Electrical conductivity of the fabric changed with the “odd–even” oscillations of K/S value of the cotton fabric. Furthermore, cotton fabric alternately deposited with five cycles reached the highest electrical conductivity (0.335 mS/cm). Meanwhile, the fabric presents excellent UV protection capacity (maximum UPF value of 385.07), which was 24.4 times of pristine cotton fabric (15.76). In addition, cotton fabric strain sensor coated by PEDOT:PSS could effectively detect finger and knee movements of humans, showing a promising prospect in the field of human rehabilitation training, real-time monitoring, and gesture recognition due to its good stability and being highly responsive.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-022-04431-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Composites ; Cotton ; Cotton fabrics ; Electrical resistivity ; Electron micrographs ; Fourier transforms ; FTIR spectrometers ; Gesture recognition ; Glass ; Human motion ; Infrared spectrometers ; Monitoring ; Natural Materials ; Organic Chemistry ; Original Research ; Photoelectrons ; Physical Chemistry ; Polymer Sciences ; Quaternary ammonium salts ; Raman spectroscopy ; Rehabilitation ; Self-assembly ; Spectrum analysis ; Sustainable Development ; Wearable technology</subject><ispartof>Cellulose (London), 2022-03, Vol.29 (4), p.2699-2709</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c85b8d143264b0607b48538414f1d41fd5c1ca20af7f86652290909a094c5e5e3</citedby><cites>FETCH-LOGICAL-c319t-c85b8d143264b0607b48538414f1d41fd5c1ca20af7f86652290909a094c5e5e3</cites><orcidid>0000-0002-8461-6552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-022-04431-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-022-04431-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cui, Yifan</creatorcontrib><creatorcontrib>Zheng, Guolin</creatorcontrib><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Zhou, Man</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Yu, Yuanyuan</creatorcontrib><title>Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic self-assembly) of chitosan (or chitosan quaternary ammonium salt) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), abbreviated to PEDOT:PSS. Chemical structure and microscopic morphology of the cotton fabric coated with PEDOT:PSS were measured using X-ray photoelectron spectroscopy, Raman spectroscopy, Scanning electron micrographs, Fourier transform infrared spectrometer and color strength (K/S value). Electrical conductivity of the fabric changed with the “odd–even” oscillations of K/S value of the cotton fabric. Furthermore, cotton fabric alternately deposited with five cycles reached the highest electrical conductivity (0.335 mS/cm). Meanwhile, the fabric presents excellent UV protection capacity (maximum UPF value of 385.07), which was 24.4 times of pristine cotton fabric (15.76). In addition, cotton fabric strain sensor coated by PEDOT:PSS could effectively detect finger and knee movements of humans, showing a promising prospect in the field of human rehabilitation training, real-time monitoring, and gesture recognition due to its good stability and being highly responsive.</description><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Composites</subject><subject>Cotton</subject><subject>Cotton fabrics</subject><subject>Electrical resistivity</subject><subject>Electron micrographs</subject><subject>Fourier transforms</subject><subject>FTIR spectrometers</subject><subject>Gesture recognition</subject><subject>Glass</subject><subject>Human motion</subject><subject>Infrared spectrometers</subject><subject>Monitoring</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Quaternary ammonium salts</subject><subject>Raman spectroscopy</subject><subject>Rehabilitation</subject><subject>Self-assembly</subject><subject>Spectrum analysis</subject><subject>Sustainable Development</subject><subject>Wearable technology</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmk8yPO62tCgMttBV3IZNJ6pTpTE1SaV_BpzZtBXeSxYWb75zDPQhdE7glAOmdI8BTiIDSCBiLSbQ9QT3CUxplGX0_RT3Ikzx8x_k5unBuCQB5SkkPfY9kaWslfd21uDPYeau9-pBlo_Fk-DSe3U-mU6w66XUVhvcBMwcJ_qolLh4LrButvO2cDyYKO92YSDqnV2Wzw7KtcO0dnr_hte18APc5-63TravbxX691tbX2l2iMyMbp69-Zx_NR8PZ4CUqxs-vg4ciUjHJfaQyXmYVYTFNWAkJpCXLeJwxwgypGDEVV0RJCtKkJksSTmkO4UnImeKa67iPbo6-Ifpzo50Xy25j2xApaBKnPKMJsEDRI6XCac5qI9a2Xkm7EwTEvnNx7FyEzsWhc7ENovgocgFuF9r-Wf-j-gEv6IXE</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Cui, Yifan</creator><creator>Zheng, Guolin</creator><creator>Jiang, Zhe</creator><creator>Zhou, Yu</creator><creator>Wang, Qiang</creator><creator>Zhou, Man</creator><creator>Wang, Ping</creator><creator>Yu, Yuanyuan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8461-6552</orcidid></search><sort><creationdate>20220301</creationdate><title>Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties</title><author>Cui, Yifan ; Zheng, Guolin ; Jiang, Zhe ; Zhou, Yu ; Wang, Qiang ; Zhou, Man ; Wang, Ping ; Yu, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c85b8d143264b0607b48538414f1d41fd5c1ca20af7f86652290909a094c5e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Composites</topic><topic>Cotton</topic><topic>Cotton fabrics</topic><topic>Electrical resistivity</topic><topic>Electron micrographs</topic><topic>Fourier transforms</topic><topic>FTIR spectrometers</topic><topic>Gesture recognition</topic><topic>Glass</topic><topic>Human motion</topic><topic>Infrared spectrometers</topic><topic>Monitoring</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Quaternary ammonium salts</topic><topic>Raman spectroscopy</topic><topic>Rehabilitation</topic><topic>Self-assembly</topic><topic>Spectrum analysis</topic><topic>Sustainable Development</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yifan</creatorcontrib><creatorcontrib>Zheng, Guolin</creatorcontrib><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Zhou, Man</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Yu, Yuanyuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yifan</au><au>Zheng, Guolin</au><au>Jiang, Zhe</au><au>Zhou, Yu</au><au>Wang, Qiang</au><au>Zhou, Man</au><au>Wang, Ping</au><au>Yu, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>29</volume><issue>4</issue><spage>2699</spage><epage>2709</epage><pages>2699-2709</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic self-assembly) of chitosan (or chitosan quaternary ammonium salt) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), abbreviated to PEDOT:PSS. Chemical structure and microscopic morphology of the cotton fabric coated with PEDOT:PSS were measured using X-ray photoelectron spectroscopy, Raman spectroscopy, Scanning electron micrographs, Fourier transform infrared spectrometer and color strength (K/S value). Electrical conductivity of the fabric changed with the “odd–even” oscillations of K/S value of the cotton fabric. Furthermore, cotton fabric alternately deposited with five cycles reached the highest electrical conductivity (0.335 mS/cm). Meanwhile, the fabric presents excellent UV protection capacity (maximum UPF value of 385.07), which was 24.4 times of pristine cotton fabric (15.76). In addition, cotton fabric strain sensor coated by PEDOT:PSS could effectively detect finger and knee movements of humans, showing a promising prospect in the field of human rehabilitation training, real-time monitoring, and gesture recognition due to its good stability and being highly responsive.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-022-04431-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8461-6552</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2022-03, Vol.29 (4), p.2699-2709
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2637582604
source SpringerLink Journals - AutoHoldings
subjects Bioorganic Chemistry
Ceramics
Chemistry
Chemistry and Materials Science
Chitosan
Composites
Cotton
Cotton fabrics
Electrical resistivity
Electron micrographs
Fourier transforms
FTIR spectrometers
Gesture recognition
Glass
Human motion
Infrared spectrometers
Monitoring
Natural Materials
Organic Chemistry
Original Research
Photoelectrons
Physical Chemistry
Polymer Sciences
Quaternary ammonium salts
Raman spectroscopy
Rehabilitation
Self-assembly
Spectrum analysis
Sustainable Development
Wearable technology
title Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20stretchable%20PEDOT:PSS%20coated%20cotton%20fabric%20via%20LBL%20electrostatic%20self-assembly%20and%20its%20UV%20protection%20and%20sensing%20properties&rft.jtitle=Cellulose%20(London)&rft.au=Cui,%20Yifan&rft.date=2022-03-01&rft.volume=29&rft.issue=4&rft.spage=2699&rft.epage=2709&rft.pages=2699-2709&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-022-04431-x&rft_dat=%3Cproquest_cross%3E2637582604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637582604&rft_id=info:pmid/&rfr_iscdi=true