Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties
The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic sel...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2022-03, Vol.29 (4), p.2699-2709 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2709 |
---|---|
container_issue | 4 |
container_start_page | 2699 |
container_title | Cellulose (London) |
container_volume | 29 |
creator | Cui, Yifan Zheng, Guolin Jiang, Zhe Zhou, Yu Wang, Qiang Zhou, Man Wang, Ping Yu, Yuanyuan |
description | The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic self-assembly) of chitosan (or chitosan quaternary ammonium salt) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), abbreviated to PEDOT:PSS. Chemical structure and microscopic morphology of the cotton fabric coated with PEDOT:PSS were measured using X-ray photoelectron spectroscopy, Raman spectroscopy, Scanning electron micrographs, Fourier transform infrared spectrometer and color strength (K/S value). Electrical conductivity of the fabric changed with the “odd–even” oscillations of K/S value of the cotton fabric. Furthermore, cotton fabric alternately deposited with five cycles reached the highest electrical conductivity (0.335 mS/cm). Meanwhile, the fabric presents excellent UV protection capacity (maximum UPF value of 385.07), which was 24.4 times of pristine cotton fabric (15.76). In addition, cotton fabric strain sensor coated by PEDOT:PSS could effectively detect finger and knee movements of humans, showing a promising prospect in the field of human rehabilitation training, real-time monitoring, and gesture recognition due to its good stability and being highly responsive. |
doi_str_mv | 10.1007/s10570-022-04431-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637582604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637582604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c85b8d143264b0607b48538414f1d41fd5c1ca20af7f86652290909a094c5e5e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmk8yPO62tCgMttBV3IZNJ6pTpTE1SaV_BpzZtBXeSxYWb75zDPQhdE7glAOmdI8BTiIDSCBiLSbQ9QT3CUxplGX0_RT3Ikzx8x_k5unBuCQB5SkkPfY9kaWslfd21uDPYeau9-pBlo_Fk-DSe3U-mU6w66XUVhvcBMwcJ_qolLh4LrButvO2cDyYKO92YSDqnV2Wzw7KtcO0dnr_hte18APc5-63TravbxX691tbX2l2iMyMbp69-Zx_NR8PZ4CUqxs-vg4ciUjHJfaQyXmYVYTFNWAkJpCXLeJwxwgypGDEVV0RJCtKkJksSTmkO4UnImeKa67iPbo6-Ifpzo50Xy25j2xApaBKnPKMJsEDRI6XCac5qI9a2Xkm7EwTEvnNx7FyEzsWhc7ENovgocgFuF9r-Wf-j-gEv6IXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637582604</pqid></control><display><type>article</type><title>Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cui, Yifan ; Zheng, Guolin ; Jiang, Zhe ; Zhou, Yu ; Wang, Qiang ; Zhou, Man ; Wang, Ping ; Yu, Yuanyuan</creator><creatorcontrib>Cui, Yifan ; Zheng, Guolin ; Jiang, Zhe ; Zhou, Yu ; Wang, Qiang ; Zhou, Man ; Wang, Ping ; Yu, Yuanyuan</creatorcontrib><description>The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic self-assembly) of chitosan (or chitosan quaternary ammonium salt) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), abbreviated to PEDOT:PSS. Chemical structure and microscopic morphology of the cotton fabric coated with PEDOT:PSS were measured using X-ray photoelectron spectroscopy, Raman spectroscopy, Scanning electron micrographs, Fourier transform infrared spectrometer and color strength (K/S value). Electrical conductivity of the fabric changed with the “odd–even” oscillations of K/S value of the cotton fabric. Furthermore, cotton fabric alternately deposited with five cycles reached the highest electrical conductivity (0.335 mS/cm). Meanwhile, the fabric presents excellent UV protection capacity (maximum UPF value of 385.07), which was 24.4 times of pristine cotton fabric (15.76). In addition, cotton fabric strain sensor coated by PEDOT:PSS could effectively detect finger and knee movements of humans, showing a promising prospect in the field of human rehabilitation training, real-time monitoring, and gesture recognition due to its good stability and being highly responsive.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-022-04431-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Composites ; Cotton ; Cotton fabrics ; Electrical resistivity ; Electron micrographs ; Fourier transforms ; FTIR spectrometers ; Gesture recognition ; Glass ; Human motion ; Infrared spectrometers ; Monitoring ; Natural Materials ; Organic Chemistry ; Original Research ; Photoelectrons ; Physical Chemistry ; Polymer Sciences ; Quaternary ammonium salts ; Raman spectroscopy ; Rehabilitation ; Self-assembly ; Spectrum analysis ; Sustainable Development ; Wearable technology</subject><ispartof>Cellulose (London), 2022-03, Vol.29 (4), p.2699-2709</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c85b8d143264b0607b48538414f1d41fd5c1ca20af7f86652290909a094c5e5e3</citedby><cites>FETCH-LOGICAL-c319t-c85b8d143264b0607b48538414f1d41fd5c1ca20af7f86652290909a094c5e5e3</cites><orcidid>0000-0002-8461-6552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-022-04431-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-022-04431-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cui, Yifan</creatorcontrib><creatorcontrib>Zheng, Guolin</creatorcontrib><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Zhou, Man</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Yu, Yuanyuan</creatorcontrib><title>Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic self-assembly) of chitosan (or chitosan quaternary ammonium salt) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), abbreviated to PEDOT:PSS. Chemical structure and microscopic morphology of the cotton fabric coated with PEDOT:PSS were measured using X-ray photoelectron spectroscopy, Raman spectroscopy, Scanning electron micrographs, Fourier transform infrared spectrometer and color strength (K/S value). Electrical conductivity of the fabric changed with the “odd–even” oscillations of K/S value of the cotton fabric. Furthermore, cotton fabric alternately deposited with five cycles reached the highest electrical conductivity (0.335 mS/cm). Meanwhile, the fabric presents excellent UV protection capacity (maximum UPF value of 385.07), which was 24.4 times of pristine cotton fabric (15.76). In addition, cotton fabric strain sensor coated by PEDOT:PSS could effectively detect finger and knee movements of humans, showing a promising prospect in the field of human rehabilitation training, real-time monitoring, and gesture recognition due to its good stability and being highly responsive.</description><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Composites</subject><subject>Cotton</subject><subject>Cotton fabrics</subject><subject>Electrical resistivity</subject><subject>Electron micrographs</subject><subject>Fourier transforms</subject><subject>FTIR spectrometers</subject><subject>Gesture recognition</subject><subject>Glass</subject><subject>Human motion</subject><subject>Infrared spectrometers</subject><subject>Monitoring</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Quaternary ammonium salts</subject><subject>Raman spectroscopy</subject><subject>Rehabilitation</subject><subject>Self-assembly</subject><subject>Spectrum analysis</subject><subject>Sustainable Development</subject><subject>Wearable technology</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmk8yPO62tCgMttBV3IZNJ6pTpTE1SaV_BpzZtBXeSxYWb75zDPQhdE7glAOmdI8BTiIDSCBiLSbQ9QT3CUxplGX0_RT3Ikzx8x_k5unBuCQB5SkkPfY9kaWslfd21uDPYeau9-pBlo_Fk-DSe3U-mU6w66XUVhvcBMwcJ_qolLh4LrButvO2cDyYKO92YSDqnV2Wzw7KtcO0dnr_hte18APc5-63TravbxX691tbX2l2iMyMbp69-Zx_NR8PZ4CUqxs-vg4ciUjHJfaQyXmYVYTFNWAkJpCXLeJwxwgypGDEVV0RJCtKkJksSTmkO4UnImeKa67iPbo6-Ifpzo50Xy25j2xApaBKnPKMJsEDRI6XCac5qI9a2Xkm7EwTEvnNx7FyEzsWhc7ENovgocgFuF9r-Wf-j-gEv6IXE</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Cui, Yifan</creator><creator>Zheng, Guolin</creator><creator>Jiang, Zhe</creator><creator>Zhou, Yu</creator><creator>Wang, Qiang</creator><creator>Zhou, Man</creator><creator>Wang, Ping</creator><creator>Yu, Yuanyuan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8461-6552</orcidid></search><sort><creationdate>20220301</creationdate><title>Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties</title><author>Cui, Yifan ; Zheng, Guolin ; Jiang, Zhe ; Zhou, Yu ; Wang, Qiang ; Zhou, Man ; Wang, Ping ; Yu, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c85b8d143264b0607b48538414f1d41fd5c1ca20af7f86652290909a094c5e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Composites</topic><topic>Cotton</topic><topic>Cotton fabrics</topic><topic>Electrical resistivity</topic><topic>Electron micrographs</topic><topic>Fourier transforms</topic><topic>FTIR spectrometers</topic><topic>Gesture recognition</topic><topic>Glass</topic><topic>Human motion</topic><topic>Infrared spectrometers</topic><topic>Monitoring</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Quaternary ammonium salts</topic><topic>Raman spectroscopy</topic><topic>Rehabilitation</topic><topic>Self-assembly</topic><topic>Spectrum analysis</topic><topic>Sustainable Development</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yifan</creatorcontrib><creatorcontrib>Zheng, Guolin</creatorcontrib><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Zhou, Man</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Yu, Yuanyuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yifan</au><au>Zheng, Guolin</au><au>Jiang, Zhe</au><au>Zhou, Yu</au><au>Wang, Qiang</au><au>Zhou, Man</au><au>Wang, Ping</au><au>Yu, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>29</volume><issue>4</issue><spage>2699</spage><epage>2709</epage><pages>2699-2709</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>The development and improvement of fabric-based stretchable strain sensors play a vital role in constructing wearable devices. In this paper, a flexible and sensitive cotton-based strain sensor for human motion monitoring was successfully developed by facile LBL-ESA (layer-by-layer electrostatic self-assembly) of chitosan (or chitosan quaternary ammonium salt) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), abbreviated to PEDOT:PSS. Chemical structure and microscopic morphology of the cotton fabric coated with PEDOT:PSS were measured using X-ray photoelectron spectroscopy, Raman spectroscopy, Scanning electron micrographs, Fourier transform infrared spectrometer and color strength (K/S value). Electrical conductivity of the fabric changed with the “odd–even” oscillations of K/S value of the cotton fabric. Furthermore, cotton fabric alternately deposited with five cycles reached the highest electrical conductivity (0.335 mS/cm). Meanwhile, the fabric presents excellent UV protection capacity (maximum UPF value of 385.07), which was 24.4 times of pristine cotton fabric (15.76). In addition, cotton fabric strain sensor coated by PEDOT:PSS could effectively detect finger and knee movements of humans, showing a promising prospect in the field of human rehabilitation training, real-time monitoring, and gesture recognition due to its good stability and being highly responsive.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-022-04431-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8461-6552</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2022-03, Vol.29 (4), p.2699-2709 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2637582604 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bioorganic Chemistry Ceramics Chemistry Chemistry and Materials Science Chitosan Composites Cotton Cotton fabrics Electrical resistivity Electron micrographs Fourier transforms FTIR spectrometers Gesture recognition Glass Human motion Infrared spectrometers Monitoring Natural Materials Organic Chemistry Original Research Photoelectrons Physical Chemistry Polymer Sciences Quaternary ammonium salts Raman spectroscopy Rehabilitation Self-assembly Spectrum analysis Sustainable Development Wearable technology |
title | Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20stretchable%20PEDOT:PSS%20coated%20cotton%20fabric%20via%20LBL%20electrostatic%20self-assembly%20and%20its%20UV%20protection%20and%20sensing%20properties&rft.jtitle=Cellulose%20(London)&rft.au=Cui,%20Yifan&rft.date=2022-03-01&rft.volume=29&rft.issue=4&rft.spage=2699&rft.epage=2709&rft.pages=2699-2709&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-022-04431-x&rft_dat=%3Cproquest_cross%3E2637582604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637582604&rft_id=info:pmid/&rfr_iscdi=true |