An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications

In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2022-04, Vol.41 (3), Article 89
Hauptverfasser: Peiting, Gao, Tao, Wang, Xilin, Liu, Yongfei, Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Computational & applied mathematics
container_volume 41
creator Peiting, Gao
Tao, Wang
Xilin, Liu
Yongfei, Wu
description In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is determined by Dai–Liao conjugacy condition. By combining with projection technology, we obtain a three-term projection method to solve large-scale non-smooth monotone nonlinear equations with convex constraints. Under some mild assumptions, the global convergence and R-linear convergence rate are proved. Numerical results show that our method is competitive and efficient for solving large-scale monotone nonlinear equations with convex constraints. Furthermore, our algorithm is also applied to recover a sparse signal from incomplete and contaminated sampling measurements in compressed sensing, and obtain practical, robust performance in comparing with other algorithms.
doi_str_mv 10.1007/s40314-022-01796-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637579902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637579902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8fd9b35d5b3f272d499b429eb110feb8224e46cce99dc8fc9226585c8dce602a3</originalsourceid><addsrcrecordid>eNp9kctqHDEQRUVIIBMnP5CVIGslevVDS2OcBwxkY6-FWl1qa-iReiT1OP4ff2g0bkN2WRVUnXtqcRH6zOhXRmn3LUsqmCSUc0JZp1oi36Ad62lHqKD8LdpxLnoiWireow85HygVHZNyh56vAwbnvPUQCi4PCYAUSEdsYziskymAp2TGy5UMJsOIzTzF5MvDEftwjvPZhwnnBWxJZsanNZYXk4sJ59drVZ3hz2XkCvlQJccYYokBcIhhrhuTMJxWU3xl8GO1Y7Mss7fb5iN658yc4dPrvEL332_vbn6S_e8fv26u98QKpgrp3agG0YzNIBzv-CiVGiRXMDBGHQw95xJkay0oNdreWcV52_SN7UcLLeVGXKEvm3dJ8bRCLvoQ1xTqS81b0TWdUpRXim-UTTHnBE4vyR9NetKM6ksbemtD1zb0Sxta1pDYQrnCYYL0T_2f1F_YwpMj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637579902</pqid></control><display><type>article</type><title>An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Peiting, Gao ; Tao, Wang ; Xilin, Liu ; Yongfei, Wu</creator><creatorcontrib>Peiting, Gao ; Tao, Wang ; Xilin, Liu ; Yongfei, Wu</creatorcontrib><description>In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is determined by Dai–Liao conjugacy condition. By combining with projection technology, we obtain a three-term projection method to solve large-scale non-smooth monotone nonlinear equations with convex constraints. Under some mild assumptions, the global convergence and R-linear convergence rate are proved. Numerical results show that our method is competitive and efficient for solving large-scale monotone nonlinear equations with convex constraints. Furthermore, our algorithm is also applied to recover a sparse signal from incomplete and contaminated sampling measurements in compressed sensing, and obtain practical, robust performance in comparing with other algorithms.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-01796-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Conjugate gradient method ; Constraints ; Convergence ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Quotients ; Robustness (mathematics)</subject><ispartof>Computational &amp; applied mathematics, 2022-04, Vol.41 (3), Article 89</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022</rights><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8fd9b35d5b3f272d499b429eb110feb8224e46cce99dc8fc9226585c8dce602a3</citedby><cites>FETCH-LOGICAL-c319t-8fd9b35d5b3f272d499b429eb110feb8224e46cce99dc8fc9226585c8dce602a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-01796-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-01796-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Peiting, Gao</creatorcontrib><creatorcontrib>Tao, Wang</creatorcontrib><creatorcontrib>Xilin, Liu</creatorcontrib><creatorcontrib>Yongfei, Wu</creatorcontrib><title>An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is determined by Dai–Liao conjugacy condition. By combining with projection technology, we obtain a three-term projection method to solve large-scale non-smooth monotone nonlinear equations with convex constraints. Under some mild assumptions, the global convergence and R-linear convergence rate are proved. Numerical results show that our method is competitive and efficient for solving large-scale monotone nonlinear equations with convex constraints. Furthermore, our algorithm is also applied to recover a sparse signal from incomplete and contaminated sampling measurements in compressed sensing, and obtain practical, robust performance in comparing with other algorithms.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conjugate gradient method</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Quotients</subject><subject>Robustness (mathematics)</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctqHDEQRUVIIBMnP5CVIGslevVDS2OcBwxkY6-FWl1qa-iReiT1OP4ff2g0bkN2WRVUnXtqcRH6zOhXRmn3LUsqmCSUc0JZp1oi36Ad62lHqKD8LdpxLnoiWireow85HygVHZNyh56vAwbnvPUQCi4PCYAUSEdsYziskymAp2TGy5UMJsOIzTzF5MvDEftwjvPZhwnnBWxJZsanNZYXk4sJ59drVZ3hz2XkCvlQJccYYokBcIhhrhuTMJxWU3xl8GO1Y7Mss7fb5iN658yc4dPrvEL332_vbn6S_e8fv26u98QKpgrp3agG0YzNIBzv-CiVGiRXMDBGHQw95xJkay0oNdreWcV52_SN7UcLLeVGXKEvm3dJ8bRCLvoQ1xTqS81b0TWdUpRXim-UTTHnBE4vyR9NetKM6ksbemtD1zb0Sxta1pDYQrnCYYL0T_2f1F_YwpMj</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Peiting, Gao</creator><creator>Tao, Wang</creator><creator>Xilin, Liu</creator><creator>Yongfei, Wu</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications</title><author>Peiting, Gao ; Tao, Wang ; Xilin, Liu ; Yongfei, Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8fd9b35d5b3f272d499b429eb110feb8224e46cce99dc8fc9226585c8dce602a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conjugate gradient method</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Quotients</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peiting, Gao</creatorcontrib><creatorcontrib>Tao, Wang</creatorcontrib><creatorcontrib>Xilin, Liu</creatorcontrib><creatorcontrib>Yongfei, Wu</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peiting, Gao</au><au>Tao, Wang</au><au>Xilin, Liu</au><au>Yongfei, Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>41</volume><issue>3</issue><artnum>89</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is determined by Dai–Liao conjugacy condition. By combining with projection technology, we obtain a three-term projection method to solve large-scale non-smooth monotone nonlinear equations with convex constraints. Under some mild assumptions, the global convergence and R-linear convergence rate are proved. Numerical results show that our method is competitive and efficient for solving large-scale monotone nonlinear equations with convex constraints. Furthermore, our algorithm is also applied to recover a sparse signal from incomplete and contaminated sampling measurements in compressed sensing, and obtain practical, robust performance in comparing with other algorithms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-01796-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2022-04, Vol.41 (3), Article 89
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2637579902
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Conjugate gradient method
Constraints
Convergence
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Nonlinear equations
Quotients
Robustness (mathematics)
title An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20three-term%20conjugate%20gradient-based%20algorithm%20involving%20spectral%20quotient%20for%20solving%20convex%20constrained%20monotone%20nonlinear%20equations%20with%20applications&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Peiting,%20Gao&rft.date=2022-04-01&rft.volume=41&rft.issue=3&rft.artnum=89&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-01796-4&rft_dat=%3Cproquest_cross%3E2637579902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637579902&rft_id=info:pmid/&rfr_iscdi=true