An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications
In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is det...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2022-04, Vol.41 (3), Article 89 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 41 |
creator | Peiting, Gao Tao, Wang Xilin, Liu Yongfei, Wu |
description | In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is determined by Dai–Liao conjugacy condition. By combining with projection technology, we obtain a three-term projection method to solve large-scale non-smooth monotone nonlinear equations with convex constraints. Under some mild assumptions, the global convergence and R-linear convergence rate are proved. Numerical results show that our method is competitive and efficient for solving large-scale monotone nonlinear equations with convex constraints. Furthermore, our algorithm is also applied to recover a sparse signal from incomplete and contaminated sampling measurements in compressed sensing, and obtain practical, robust performance in comparing with other algorithms. |
doi_str_mv | 10.1007/s40314-022-01796-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637579902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637579902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8fd9b35d5b3f272d499b429eb110feb8224e46cce99dc8fc9226585c8dce602a3</originalsourceid><addsrcrecordid>eNp9kctqHDEQRUVIIBMnP5CVIGslevVDS2OcBwxkY6-FWl1qa-iReiT1OP4ff2g0bkN2WRVUnXtqcRH6zOhXRmn3LUsqmCSUc0JZp1oi36Ad62lHqKD8LdpxLnoiWireow85HygVHZNyh56vAwbnvPUQCi4PCYAUSEdsYziskymAp2TGy5UMJsOIzTzF5MvDEftwjvPZhwnnBWxJZsanNZYXk4sJ59drVZ3hz2XkCvlQJccYYokBcIhhrhuTMJxWU3xl8GO1Y7Mss7fb5iN658yc4dPrvEL332_vbn6S_e8fv26u98QKpgrp3agG0YzNIBzv-CiVGiRXMDBGHQw95xJkay0oNdreWcV52_SN7UcLLeVGXKEvm3dJ8bRCLvoQ1xTqS81b0TWdUpRXim-UTTHnBE4vyR9NetKM6ksbemtD1zb0Sxta1pDYQrnCYYL0T_2f1F_YwpMj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637579902</pqid></control><display><type>article</type><title>An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Peiting, Gao ; Tao, Wang ; Xilin, Liu ; Yongfei, Wu</creator><creatorcontrib>Peiting, Gao ; Tao, Wang ; Xilin, Liu ; Yongfei, Wu</creatorcontrib><description>In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is determined by Dai–Liao conjugacy condition. By combining with projection technology, we obtain a three-term projection method to solve large-scale non-smooth monotone nonlinear equations with convex constraints. Under some mild assumptions, the global convergence and R-linear convergence rate are proved. Numerical results show that our method is competitive and efficient for solving large-scale monotone nonlinear equations with convex constraints. Furthermore, our algorithm is also applied to recover a sparse signal from incomplete and contaminated sampling measurements in compressed sensing, and obtain practical, robust performance in comparing with other algorithms.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-01796-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Conjugate gradient method ; Constraints ; Convergence ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Quotients ; Robustness (mathematics)</subject><ispartof>Computational & applied mathematics, 2022-04, Vol.41 (3), Article 89</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022</rights><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8fd9b35d5b3f272d499b429eb110feb8224e46cce99dc8fc9226585c8dce602a3</citedby><cites>FETCH-LOGICAL-c319t-8fd9b35d5b3f272d499b429eb110feb8224e46cce99dc8fc9226585c8dce602a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-01796-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-01796-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Peiting, Gao</creatorcontrib><creatorcontrib>Tao, Wang</creatorcontrib><creatorcontrib>Xilin, Liu</creatorcontrib><creatorcontrib>Yongfei, Wu</creatorcontrib><title>An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is determined by Dai–Liao conjugacy condition. By combining with projection technology, we obtain a three-term projection method to solve large-scale non-smooth monotone nonlinear equations with convex constraints. Under some mild assumptions, the global convergence and R-linear convergence rate are proved. Numerical results show that our method is competitive and efficient for solving large-scale monotone nonlinear equations with convex constraints. Furthermore, our algorithm is also applied to recover a sparse signal from incomplete and contaminated sampling measurements in compressed sensing, and obtain practical, robust performance in comparing with other algorithms.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conjugate gradient method</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Quotients</subject><subject>Robustness (mathematics)</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctqHDEQRUVIIBMnP5CVIGslevVDS2OcBwxkY6-FWl1qa-iReiT1OP4ff2g0bkN2WRVUnXtqcRH6zOhXRmn3LUsqmCSUc0JZp1oi36Ad62lHqKD8LdpxLnoiWireow85HygVHZNyh56vAwbnvPUQCi4PCYAUSEdsYziskymAp2TGy5UMJsOIzTzF5MvDEftwjvPZhwnnBWxJZsanNZYXk4sJ59drVZ3hz2XkCvlQJccYYokBcIhhrhuTMJxWU3xl8GO1Y7Mss7fb5iN658yc4dPrvEL332_vbn6S_e8fv26u98QKpgrp3agG0YzNIBzv-CiVGiRXMDBGHQw95xJkay0oNdreWcV52_SN7UcLLeVGXKEvm3dJ8bRCLvoQ1xTqS81b0TWdUpRXim-UTTHnBE4vyR9NetKM6ksbemtD1zb0Sxta1pDYQrnCYYL0T_2f1F_YwpMj</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Peiting, Gao</creator><creator>Tao, Wang</creator><creator>Xilin, Liu</creator><creator>Yongfei, Wu</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications</title><author>Peiting, Gao ; Tao, Wang ; Xilin, Liu ; Yongfei, Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8fd9b35d5b3f272d499b429eb110feb8224e46cce99dc8fc9226585c8dce602a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conjugate gradient method</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Quotients</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peiting, Gao</creatorcontrib><creatorcontrib>Tao, Wang</creatorcontrib><creatorcontrib>Xilin, Liu</creatorcontrib><creatorcontrib>Yongfei, Wu</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peiting, Gao</au><au>Tao, Wang</au><au>Xilin, Liu</au><au>Yongfei, Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>41</volume><issue>3</issue><artnum>89</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, based on an adaptive three-term conjugate gradient method proposed by Anderi, we propose a three-term conjugate gradient method involving spectral quotient. The search direction satisfies sufficient descent property independent of any line search and the parameter in our method is determined by Dai–Liao conjugacy condition. By combining with projection technology, we obtain a three-term projection method to solve large-scale non-smooth monotone nonlinear equations with convex constraints. Under some mild assumptions, the global convergence and R-linear convergence rate are proved. Numerical results show that our method is competitive and efficient for solving large-scale monotone nonlinear equations with convex constraints. Furthermore, our algorithm is also applied to recover a sparse signal from incomplete and contaminated sampling measurements in compressed sensing, and obtain practical, robust performance in comparing with other algorithms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-01796-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2022-04, Vol.41 (3), Article 89 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2637579902 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Conjugate gradient method Constraints Convergence Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Nonlinear equations Quotients Robustness (mathematics) |
title | An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20three-term%20conjugate%20gradient-based%20algorithm%20involving%20spectral%20quotient%20for%20solving%20convex%20constrained%20monotone%20nonlinear%20equations%20with%20applications&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Peiting,%20Gao&rft.date=2022-04-01&rft.volume=41&rft.issue=3&rft.artnum=89&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-01796-4&rft_dat=%3Cproquest_cross%3E2637579902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637579902&rft_id=info:pmid/&rfr_iscdi=true |