A new proof of the growth rate of the solvable Baumslag–Solitar groups
We exhibit a regular language of geodesics for a large set of elements of BS (1, n ) and show that the growth rate of this language is the growth rate of the group. This provides a straightforward calculation of the growth rate of BS (1, n ), which was initially computed by Collins et al. (AM (Bas...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2022-04, Vol.216 (2), Article 22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Geometriae dedicata |
container_volume | 216 |
creator | Taback, Jennifer Walker, Alden |
description | We exhibit a regular language of geodesics for a large set of elements of
BS
(1,
n
) and show that the growth rate of this language is the growth rate of the group. This provides a straightforward calculation of the growth rate of
BS
(1,
n
), which was initially computed by Collins et al. (AM (Basel) 62:1-11, 1994). Our methods are based on those we develop in Taback and Walker (JTA, to appear) to show that
BS
(1,
n
) has a positive density of elements of positive, negative and zero conjugation curvature, as introduced by Bar-Natan et al. (JTA, 2020,
https://doi.org/10.1142/S1793525321500096
). |
doi_str_mv | 10.1007/s10711-022-00683-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637579683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637579683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-36879bd42574d23f9132d7e3a1d9a1ed32a81e7f43912c8a6bf79b39ee28e4d33</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFZfwFPA8-rsbJLNHmtRKxQ8qOdl20z6h7RbdxODN9_BN_RJ3BrFmzAwMPy-b2Y-xs4FXAoAdRUEKCE4IHKAvJC8O2ADkSnkWuTFIRsApDnPVJYds5MQ1gCglcIBm4ySLXXJzjtXJbGaJSUL77pmmXjb0O8ouPrVzmpKrm27CbVdfL5_PLp61Vi_x9tdOGVHla0Dnf30IXu-vXkaT_j04e5-PJryOSpouMwLpWdliplKS5SVFhJLRdKKUltBpURbCFJVKrXAeWHzWRV5qYmwoLSUcsguet948ktLoTFr1_ptXGkwlypTOr4fKeypuXcheKrMzq821r8ZAWafmOkTMzEx852Y6aJI9qIQ4e2C_J_1P6ovgJhvCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637579683</pqid></control><display><type>article</type><title>A new proof of the growth rate of the solvable Baumslag–Solitar groups</title><source>Springer Nature - Complete Springer Journals</source><creator>Taback, Jennifer ; Walker, Alden</creator><creatorcontrib>Taback, Jennifer ; Walker, Alden</creatorcontrib><description>We exhibit a regular language of geodesics for a large set of elements of
BS
(1,
n
) and show that the growth rate of this language is the growth rate of the group. This provides a straightforward calculation of the growth rate of
BS
(1,
n
), which was initially computed by Collins et al. (AM (Basel) 62:1-11, 1994). Our methods are based on those we develop in Taback and Walker (JTA, to appear) to show that
BS
(1,
n
) has a positive density of elements of positive, negative and zero conjugation curvature, as introduced by Bar-Natan et al. (JTA, 2020,
https://doi.org/10.1142/S1793525321500096
).</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-022-00683-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Conjugation ; Convex and Discrete Geometry ; Differential Geometry ; Geodesy ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2022-04, Vol.216 (2), Article 22</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-36879bd42574d23f9132d7e3a1d9a1ed32a81e7f43912c8a6bf79b39ee28e4d33</cites><orcidid>0000-0002-3854-8624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-022-00683-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-022-00683-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Taback, Jennifer</creatorcontrib><creatorcontrib>Walker, Alden</creatorcontrib><title>A new proof of the growth rate of the solvable Baumslag–Solitar groups</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>We exhibit a regular language of geodesics for a large set of elements of
BS
(1,
n
) and show that the growth rate of this language is the growth rate of the group. This provides a straightforward calculation of the growth rate of
BS
(1,
n
), which was initially computed by Collins et al. (AM (Basel) 62:1-11, 1994). Our methods are based on those we develop in Taback and Walker (JTA, to appear) to show that
BS
(1,
n
) has a positive density of elements of positive, negative and zero conjugation curvature, as introduced by Bar-Natan et al. (JTA, 2020,
https://doi.org/10.1142/S1793525321500096
).</description><subject>Algebraic Geometry</subject><subject>Conjugation</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Geodesy</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsFZfwFPA8-rsbJLNHmtRKxQ8qOdl20z6h7RbdxODN9_BN_RJ3BrFmzAwMPy-b2Y-xs4FXAoAdRUEKCE4IHKAvJC8O2ADkSnkWuTFIRsApDnPVJYds5MQ1gCglcIBm4ySLXXJzjtXJbGaJSUL77pmmXjb0O8ouPrVzmpKrm27CbVdfL5_PLp61Vi_x9tdOGVHla0Dnf30IXu-vXkaT_j04e5-PJryOSpouMwLpWdliplKS5SVFhJLRdKKUltBpURbCFJVKrXAeWHzWRV5qYmwoLSUcsguet948ktLoTFr1_ptXGkwlypTOr4fKeypuXcheKrMzq821r8ZAWafmOkTMzEx852Y6aJI9qIQ4e2C_J_1P6ovgJhvCA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Taback, Jennifer</creator><creator>Walker, Alden</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3854-8624</orcidid></search><sort><creationdate>20220401</creationdate><title>A new proof of the growth rate of the solvable Baumslag–Solitar groups</title><author>Taback, Jennifer ; Walker, Alden</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-36879bd42574d23f9132d7e3a1d9a1ed32a81e7f43912c8a6bf79b39ee28e4d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Conjugation</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Geodesy</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taback, Jennifer</creatorcontrib><creatorcontrib>Walker, Alden</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taback, Jennifer</au><au>Walker, Alden</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new proof of the growth rate of the solvable Baumslag–Solitar groups</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>216</volume><issue>2</issue><artnum>22</artnum><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>We exhibit a regular language of geodesics for a large set of elements of
BS
(1,
n
) and show that the growth rate of this language is the growth rate of the group. This provides a straightforward calculation of the growth rate of
BS
(1,
n
), which was initially computed by Collins et al. (AM (Basel) 62:1-11, 1994). Our methods are based on those we develop in Taback and Walker (JTA, to appear) to show that
BS
(1,
n
) has a positive density of elements of positive, negative and zero conjugation curvature, as introduced by Bar-Natan et al. (JTA, 2020,
https://doi.org/10.1142/S1793525321500096
).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-022-00683-w</doi><orcidid>https://orcid.org/0000-0002-3854-8624</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5755 |
ispartof | Geometriae dedicata, 2022-04, Vol.216 (2), Article 22 |
issn | 0046-5755 1572-9168 |
language | eng |
recordid | cdi_proquest_journals_2637579683 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebraic Geometry Conjugation Convex and Discrete Geometry Differential Geometry Geodesy Hyperbolic Geometry Mathematics Mathematics and Statistics Original Paper Projective Geometry Topology |
title | A new proof of the growth rate of the solvable Baumslag–Solitar groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20proof%20of%20the%20growth%20rate%20of%20the%20solvable%20Baumslag%E2%80%93Solitar%20groups&rft.jtitle=Geometriae%20dedicata&rft.au=Taback,%20Jennifer&rft.date=2022-04-01&rft.volume=216&rft.issue=2&rft.artnum=22&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-022-00683-w&rft_dat=%3Cproquest_cross%3E2637579683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637579683&rft_id=info:pmid/&rfr_iscdi=true |