Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration
Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bend...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and technology 2022-03, Vol.27 (1), p.492-507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 1 |
container_start_page | 492 |
container_title | Journal of marine science and technology |
container_volume | 27 |
creator | Tabeshpour, Mohammad Reza Komachi, Younes |
description | Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bending of IL and CF VIV are investigated. Closed-form formulas are derived for estimating maximum normal stress due to the biaxial moment of CF/IL VIV and relations for estimating biaxial stress using CF values are presented. Analytical results are compared with numerical results of the time domain model and a good correlation is observed. It is shown that for tension and bending-controlled modes of vibration if the ratio of displacement amplitude of IL to CF direction is, respectively, higher than 0.22 and 0.35, normal stress due to biaxial bending is noticeably more than one directional (CF) bending stress. For a case study, the maximum biaxial stress along the riser is about 20 and 40% higher than the maximum CF stress along the length of the riser for bending and tension-controlled modes of vibration, respectively. Such results can be important not only directly in design issues, but also they may be noticeable in fatigue analysis. |
doi_str_mv | 10.1007/s00773-021-00846-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2637579527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707079217</galeid><sourcerecordid>A707079217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-97daef35ea6867d135109bdcb093d3aacde8cfa689fb96c88acb766770e7b2fd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFz9Fk083HsRS_QPCi55BNJiWlTWqyq_Xfm7qCNxmYYWbeZxhehK4ouaGEiNtSk2CYtBQTIucc8yM0o3MmsGwpO0YzouYSz1tJTtFZKWtCqOgUmSG3iGbzNQRrNo2JronjFvJP1wezD4cK0YW4qtsqLKE0yTcOYPdpBshNDqVmN0IzpOYj5QH2OEQ3WnDNR-izGUKKF-jEm02By996jt7u716Xj_j55eFpuXjGlnVywEo4A551YLjkwlHWUaJ6Z3uimGPGWAfS-rpUvlfcSmlsLzgXgoDoW-_YObqe7u5yeh-hDHqdxlz_LrrlTHRCda2oqptJtTIb0CH6NGRjazjYBpsi-FDnC0FqqJYegHYCbE6lZPB6l8PW5C9NiT7Yryf7dbVf_9iveYXYBJUqjivIf7_8Q30D9feKBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637579527</pqid></control><display><type>article</type><title>Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration</title><source>SpringerNature Journals</source><creator>Tabeshpour, Mohammad Reza ; Komachi, Younes</creator><creatorcontrib>Tabeshpour, Mohammad Reza ; Komachi, Younes</creatorcontrib><description>Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bending of IL and CF VIV are investigated. Closed-form formulas are derived for estimating maximum normal stress due to the biaxial moment of CF/IL VIV and relations for estimating biaxial stress using CF values are presented. Analytical results are compared with numerical results of the time domain model and a good correlation is observed. It is shown that for tension and bending-controlled modes of vibration if the ratio of displacement amplitude of IL to CF direction is, respectively, higher than 0.22 and 0.35, normal stress due to biaxial bending is noticeably more than one directional (CF) bending stress. For a case study, the maximum biaxial stress along the riser is about 20 and 40% higher than the maximum CF stress along the length of the riser for bending and tension-controlled modes of vibration, respectively. Such results can be important not only directly in design issues, but also they may be noticeable in fatigue analysis.</description><identifier>ISSN: 0948-4280</identifier><identifier>EISSN: 1437-8213</identifier><identifier>DOI: 10.1007/s00773-021-00846-6</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Analysis ; Automotive Engineering ; Axial stress ; Bending ; Bending stresses ; Cross flow ; Deep water ; Deformation ; Direction ; Engineering ; Engineering Design ; Engineering Fluid Dynamics ; Mechanical Engineering ; Offshore Engineering ; Original Article ; Riser pipes ; Risers ; Tension ; Vibration ; Vibration analysis ; Vibration mode ; Vortex-induced vibrations</subject><ispartof>Journal of marine science and technology, 2022-03, Vol.27 (1), p.492-507</ispartof><rights>The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-97daef35ea6867d135109bdcb093d3aacde8cfa689fb96c88acb766770e7b2fd3</citedby><cites>FETCH-LOGICAL-c358t-97daef35ea6867d135109bdcb093d3aacde8cfa689fb96c88acb766770e7b2fd3</cites><orcidid>0000-0002-7379-6914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00773-021-00846-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00773-021-00846-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Tabeshpour, Mohammad Reza</creatorcontrib><creatorcontrib>Komachi, Younes</creatorcontrib><title>Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration</title><title>Journal of marine science and technology</title><addtitle>J Mar Sci Technol</addtitle><description>Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bending of IL and CF VIV are investigated. Closed-form formulas are derived for estimating maximum normal stress due to the biaxial moment of CF/IL VIV and relations for estimating biaxial stress using CF values are presented. Analytical results are compared with numerical results of the time domain model and a good correlation is observed. It is shown that for tension and bending-controlled modes of vibration if the ratio of displacement amplitude of IL to CF direction is, respectively, higher than 0.22 and 0.35, normal stress due to biaxial bending is noticeably more than one directional (CF) bending stress. For a case study, the maximum biaxial stress along the riser is about 20 and 40% higher than the maximum CF stress along the length of the riser for bending and tension-controlled modes of vibration, respectively. Such results can be important not only directly in design issues, but also they may be noticeable in fatigue analysis.</description><subject>Analysis</subject><subject>Automotive Engineering</subject><subject>Axial stress</subject><subject>Bending</subject><subject>Bending stresses</subject><subject>Cross flow</subject><subject>Deep water</subject><subject>Deformation</subject><subject>Direction</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Engineering Fluid Dynamics</subject><subject>Mechanical Engineering</subject><subject>Offshore Engineering</subject><subject>Original Article</subject><subject>Riser pipes</subject><subject>Risers</subject><subject>Tension</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibration mode</subject><subject>Vortex-induced vibrations</subject><issn>0948-4280</issn><issn>1437-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKcFz9Fk083HsRS_QPCi55BNJiWlTWqyq_Xfm7qCNxmYYWbeZxhehK4ouaGEiNtSk2CYtBQTIucc8yM0o3MmsGwpO0YzouYSz1tJTtFZKWtCqOgUmSG3iGbzNQRrNo2JronjFvJP1wezD4cK0YW4qtsqLKE0yTcOYPdpBshNDqVmN0IzpOYj5QH2OEQ3WnDNR-izGUKKF-jEm02By996jt7u716Xj_j55eFpuXjGlnVywEo4A551YLjkwlHWUaJ6Z3uimGPGWAfS-rpUvlfcSmlsLzgXgoDoW-_YObqe7u5yeh-hDHqdxlz_LrrlTHRCda2oqptJtTIb0CH6NGRjazjYBpsi-FDnC0FqqJYegHYCbE6lZPB6l8PW5C9NiT7Yryf7dbVf_9iveYXYBJUqjivIf7_8Q30D9feKBA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Tabeshpour, Mohammad Reza</creator><creator>Komachi, Younes</creator><general>Springer Japan</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7379-6914</orcidid></search><sort><creationdate>20220301</creationdate><title>Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration</title><author>Tabeshpour, Mohammad Reza ; Komachi, Younes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-97daef35ea6867d135109bdcb093d3aacde8cfa689fb96c88acb766770e7b2fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Automotive Engineering</topic><topic>Axial stress</topic><topic>Bending</topic><topic>Bending stresses</topic><topic>Cross flow</topic><topic>Deep water</topic><topic>Deformation</topic><topic>Direction</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Engineering Fluid Dynamics</topic><topic>Mechanical Engineering</topic><topic>Offshore Engineering</topic><topic>Original Article</topic><topic>Riser pipes</topic><topic>Risers</topic><topic>Tension</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibration mode</topic><topic>Vortex-induced vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabeshpour, Mohammad Reza</creatorcontrib><creatorcontrib>Komachi, Younes</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of marine science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabeshpour, Mohammad Reza</au><au>Komachi, Younes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration</atitle><jtitle>Journal of marine science and technology</jtitle><stitle>J Mar Sci Technol</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>27</volume><issue>1</issue><spage>492</spage><epage>507</epage><pages>492-507</pages><issn>0948-4280</issn><eissn>1437-8213</eissn><abstract>Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bending of IL and CF VIV are investigated. Closed-form formulas are derived for estimating maximum normal stress due to the biaxial moment of CF/IL VIV and relations for estimating biaxial stress using CF values are presented. Analytical results are compared with numerical results of the time domain model and a good correlation is observed. It is shown that for tension and bending-controlled modes of vibration if the ratio of displacement amplitude of IL to CF direction is, respectively, higher than 0.22 and 0.35, normal stress due to biaxial bending is noticeably more than one directional (CF) bending stress. For a case study, the maximum biaxial stress along the riser is about 20 and 40% higher than the maximum CF stress along the length of the riser for bending and tension-controlled modes of vibration, respectively. Such results can be important not only directly in design issues, but also they may be noticeable in fatigue analysis.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00773-021-00846-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7379-6914</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-4280 |
ispartof | Journal of marine science and technology, 2022-03, Vol.27 (1), p.492-507 |
issn | 0948-4280 1437-8213 |
language | eng |
recordid | cdi_proquest_journals_2637579527 |
source | SpringerNature Journals |
subjects | Analysis Automotive Engineering Axial stress Bending Bending stresses Cross flow Deep water Deformation Direction Engineering Engineering Design Engineering Fluid Dynamics Mechanical Engineering Offshore Engineering Original Article Riser pipes Risers Tension Vibration Vibration analysis Vibration mode Vortex-induced vibrations |
title | Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-07T15%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20and%20numerical%20biaxial%20bending%20analysis%20of%20deepwater%20riser%20due%20to%20vortex-induced%20vibration&rft.jtitle=Journal%20of%20marine%20science%20and%20technology&rft.au=Tabeshpour,%20Mohammad%20Reza&rft.date=2022-03-01&rft.volume=27&rft.issue=1&rft.spage=492&rft.epage=507&rft.pages=492-507&rft.issn=0948-4280&rft.eissn=1437-8213&rft_id=info:doi/10.1007/s00773-021-00846-6&rft_dat=%3Cgale_proqu%3EA707079217%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637579527&rft_id=info:pmid/&rft_galeid=A707079217&rfr_iscdi=true |