A characterization of weak proximal normal structure and best proximity pairs

The aim of this paper is to address an open problem given in [Kirk et al. in J Math Anal Appl 463:461–476, (2018)]. We give a characterization of weak proximal normal structure using best proximity pair property. We also introduce a notion of pointwise cyclic contraction wrt orbits and therein prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 80
Hauptverfasser: Digar, Abhik, García, Rafael Espínola, Kosuru, G. Sankara Raju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 116
creator Digar, Abhik
García, Rafael Espínola
Kosuru, G. Sankara Raju
description The aim of this paper is to address an open problem given in [Kirk et al. in J Math Anal Appl 463:461–476, (2018)]. We give a characterization of weak proximal normal structure using best proximity pair property. We also introduce a notion of pointwise cyclic contraction wrt orbits and therein prove the existence of a best proximity pair in the setting of reflexive Banach spaces.
doi_str_mv 10.1007/s13398-022-01217-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637577724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637577724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-92d809ac6ae892414ee8c2657eaafda777cd77d1b3f73fb8b89b627df642bcbf3</originalsourceid><addsrcrecordid>eNp9UMtOAyEUJUYTm9ofcEXiGuUxDLBsGl9JjRtdE2BAp9aZCky0fn1pp4k77-bcxXncewC4JPiaYCxuEmFMSYQpRZhQIhA_ARPChUKEY3562CUSDLNzMEtphcswUkksJuBpDt27icZlH9tfk9u-g32A3958wE3sf9pPs4ZdH_eQchxcHqKHpmug9SkfKW3ewo1pY7oAZ8Gsk58dcQpe725fFg9o-Xz_uJgvkWNEZaRoI7EyrjZeKlqRynvpaM2FNyY0RgjhGiEaYlkQLFhppbI1FU2oK2qdDWwKrkbfkv81lEP0qh9iVyI1rZngxYFWhUVHlot9StEHvYnln7jVBOt9c3psTpfm9KE5zYuIjaJUyN2bj3_W_6h2wzJyHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637577724</pqid></control><display><type>article</type><title>A characterization of weak proximal normal structure and best proximity pairs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Digar, Abhik ; García, Rafael Espínola ; Kosuru, G. Sankara Raju</creator><creatorcontrib>Digar, Abhik ; García, Rafael Espínola ; Kosuru, G. Sankara Raju</creatorcontrib><description>The aim of this paper is to address an open problem given in [Kirk et al. in J Math Anal Appl 463:461–476, (2018)]. We give a characterization of weak proximal normal structure using best proximity pair property. We also introduce a notion of pointwise cyclic contraction wrt orbits and therein prove the existence of a best proximity pair in the setting of reflexive Banach spaces.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-022-01217-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Banach spaces ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Proximity ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 80</ispartof><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2022</rights><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-92d809ac6ae892414ee8c2657eaafda777cd77d1b3f73fb8b89b627df642bcbf3</citedby><cites>FETCH-LOGICAL-c319t-92d809ac6ae892414ee8c2657eaafda777cd77d1b3f73fb8b89b627df642bcbf3</cites><orcidid>0000-0003-4870-9687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-022-01217-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-022-01217-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Digar, Abhik</creatorcontrib><creatorcontrib>García, Rafael Espínola</creatorcontrib><creatorcontrib>Kosuru, G. Sankara Raju</creatorcontrib><title>A characterization of weak proximal normal structure and best proximity pairs</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</addtitle><description>The aim of this paper is to address an open problem given in [Kirk et al. in J Math Anal Appl 463:461–476, (2018)]. We give a characterization of weak proximal normal structure using best proximity pair property. We also introduce a notion of pointwise cyclic contraction wrt orbits and therein prove the existence of a best proximity pair in the setting of reflexive Banach spaces.</description><subject>Applications of Mathematics</subject><subject>Banach spaces</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Proximity</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOAyEUJUYTm9ofcEXiGuUxDLBsGl9JjRtdE2BAp9aZCky0fn1pp4k77-bcxXncewC4JPiaYCxuEmFMSYQpRZhQIhA_ARPChUKEY3562CUSDLNzMEtphcswUkksJuBpDt27icZlH9tfk9u-g32A3958wE3sf9pPs4ZdH_eQchxcHqKHpmug9SkfKW3ewo1pY7oAZ8Gsk58dcQpe725fFg9o-Xz_uJgvkWNEZaRoI7EyrjZeKlqRynvpaM2FNyY0RgjhGiEaYlkQLFhppbI1FU2oK2qdDWwKrkbfkv81lEP0qh9iVyI1rZngxYFWhUVHlot9StEHvYnln7jVBOt9c3psTpfm9KE5zYuIjaJUyN2bj3_W_6h2wzJyHQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Digar, Abhik</creator><creator>García, Rafael Espínola</creator><creator>Kosuru, G. Sankara Raju</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4870-9687</orcidid></search><sort><creationdate>20220401</creationdate><title>A characterization of weak proximal normal structure and best proximity pairs</title><author>Digar, Abhik ; García, Rafael Espínola ; Kosuru, G. Sankara Raju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-92d809ac6ae892414ee8c2657eaafda777cd77d1b3f73fb8b89b627df642bcbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Banach spaces</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Proximity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Digar, Abhik</creatorcontrib><creatorcontrib>García, Rafael Espínola</creatorcontrib><creatorcontrib>Kosuru, G. Sankara Raju</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Digar, Abhik</au><au>García, Rafael Espínola</au><au>Kosuru, G. Sankara Raju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A characterization of weak proximal normal structure and best proximity pairs</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>116</volume><issue>2</issue><artnum>80</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>The aim of this paper is to address an open problem given in [Kirk et al. in J Math Anal Appl 463:461–476, (2018)]. We give a characterization of weak proximal normal structure using best proximity pair property. We also introduce a notion of pointwise cyclic contraction wrt orbits and therein prove the existence of a best proximity pair in the setting of reflexive Banach spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-022-01217-5</doi><orcidid>https://orcid.org/0000-0003-4870-9687</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 80
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2637577724
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Banach spaces
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Original Paper
Proximity
Theoretical
title A characterization of weak proximal normal structure and best proximity pairs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20characterization%20of%20weak%20proximal%20normal%20structure%20and%20best%20proximity%20pairs&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Digar,%20Abhik&rft.date=2022-04-01&rft.volume=116&rft.issue=2&rft.artnum=80&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-022-01217-5&rft_dat=%3Cproquest_cross%3E2637577724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637577724&rft_id=info:pmid/&rfr_iscdi=true