Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness

We describe the application of Bayesian hierarchical models to the analysis of data from long-term, environmental monitoring programs. The goal of these ongoing programs is to understand status and trend in natural resources. Data are usually collected using complex sampling designs including strati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2022-03, Vol.27 (1), p.125-148
Hauptverfasser: Zachmann, Luke J., Borgman, Erin M., Witwicki, Dana L., Swan, Megan C., McIntyre, Cheryl, Hobbs, N. Thompson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 125
container_title Journal of agricultural, biological, and environmental statistics
container_volume 27
creator Zachmann, Luke J.
Borgman, Erin M.
Witwicki, Dana L.
Swan, Megan C.
McIntyre, Cheryl
Hobbs, N. Thompson
description We describe the application of Bayesian hierarchical models to the analysis of data from long-term, environmental monitoring programs. The goal of these ongoing programs is to understand status and trend in natural resources. Data are usually collected using complex sampling designs including stratification, revisit schedules, finite populations, unequal probabilities of inclusion of sample units, and censored observations. Complex designs intentionally create data that are missing from the complete data that could theoretically be obtained. This “missingness” cannot be ignored in analysis. Data collected by monitoring programs have traditionally been analyzed using the design-based Horvitz–Thompson estimator to obtain point estimates of means and variances over time. However, Horvitz–Thompson point estimates are not capable of supporting inference on temporal trend or the predictor variables that might explain trend, which instead requires model-based inference. The key to applying model-based inference to data arising from complex designs is to include information about the sampling design in the analysis. The statistical concept of ignorability provides a theoretical foundation for meeting this requirement. We show how Bayesian hierarchical models provide a general framework supporting inference on status and trend using data from the National Park Service Inventory and Monitoring Program as examples. Supplemental Materials Code and data for implementing the analyses described here can be accessed here: https://doi.org/10.36967/code-2287025 .
doi_str_mv 10.1007/s13253-021-00473-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2637577539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696200389</galeid><sourcerecordid>A696200389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-54a72bf03f4dddc302dc3540c01b67cac8ec2427485caf330a3cfd33d6e267ac3</originalsourceid><addsrcrecordid>eNp9kE1v3CAQhq2qkZom_QM9IeVMOjC22T1u0q9I-bikt0poFsOGyIEN4zTa_PqydaXccmFgeJ8RPE3zWcGpAjBfWKHuUIJWEqA1KF_eNYeqQyN1v8T3dQ-LThqlzIfmI_M9gMIe9GHz-4x2niMlcZUHP7IIuYhVonHHkUUO4iL98WnKZScoDTWUYj3EtBFfaSLxHKc7cZ2TjJuUC61HL64ic71Pnvm4OQg0sv_0vx41v75_uz3_KS9vflycry6la0FPsmvJ6HUADO0wDA5B16VrwYFa98aRW3inW23aRecoIAKhCwPi0HvdG3J41JzMc7clPz55nux9fir1E2x1j6YzpsNlTZ3OqQ2N3sYU8lSoTqfBP0SXkw-x9lf9stcAuNgDegZcyczFB7st8YHKziqwe-121m6rdvtPu32pEM4Qb_eafHl9yxvUX-Okhm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637577539</pqid></control><display><type>article</type><title>Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness</title><source>SpringerLink Journals</source><creator>Zachmann, Luke J. ; Borgman, Erin M. ; Witwicki, Dana L. ; Swan, Megan C. ; McIntyre, Cheryl ; Hobbs, N. Thompson</creator><creatorcontrib>Zachmann, Luke J. ; Borgman, Erin M. ; Witwicki, Dana L. ; Swan, Megan C. ; McIntyre, Cheryl ; Hobbs, N. Thompson</creatorcontrib><description>We describe the application of Bayesian hierarchical models to the analysis of data from long-term, environmental monitoring programs. The goal of these ongoing programs is to understand status and trend in natural resources. Data are usually collected using complex sampling designs including stratification, revisit schedules, finite populations, unequal probabilities of inclusion of sample units, and censored observations. Complex designs intentionally create data that are missing from the complete data that could theoretically be obtained. This “missingness” cannot be ignored in analysis. Data collected by monitoring programs have traditionally been analyzed using the design-based Horvitz–Thompson estimator to obtain point estimates of means and variances over time. However, Horvitz–Thompson point estimates are not capable of supporting inference on temporal trend or the predictor variables that might explain trend, which instead requires model-based inference. The key to applying model-based inference to data arising from complex designs is to include information about the sampling design in the analysis. The statistical concept of ignorability provides a theoretical foundation for meeting this requirement. We show how Bayesian hierarchical models provide a general framework supporting inference on status and trend using data from the National Park Service Inventory and Monitoring Program as examples. Supplemental Materials Code and data for implementing the analyses described here can be accessed here: https://doi.org/10.36967/code-2287025 .</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-021-00473-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Bayesian analysis ; Biostatistics ; Censorship ; Data analysis ; Design analysis ; Environmental monitoring ; Estimates ; Health Sciences ; Inference ; Mathematical models ; Mathematics and Statistics ; Medicine ; Missing data ; Monitoring/Environmental Analysis ; National parks ; Natural resources ; Sampling ; Sampling designs ; Statistics ; Statistics for Life Sciences</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2022-03, Vol.27 (1), p.125-148</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-54a72bf03f4dddc302dc3540c01b67cac8ec2427485caf330a3cfd33d6e267ac3</citedby><cites>FETCH-LOGICAL-c402t-54a72bf03f4dddc302dc3540c01b67cac8ec2427485caf330a3cfd33d6e267ac3</cites><orcidid>0000-0001-6198-0899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13253-021-00473-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13253-021-00473-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zachmann, Luke J.</creatorcontrib><creatorcontrib>Borgman, Erin M.</creatorcontrib><creatorcontrib>Witwicki, Dana L.</creatorcontrib><creatorcontrib>Swan, Megan C.</creatorcontrib><creatorcontrib>McIntyre, Cheryl</creatorcontrib><creatorcontrib>Hobbs, N. Thompson</creatorcontrib><title>Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>We describe the application of Bayesian hierarchical models to the analysis of data from long-term, environmental monitoring programs. The goal of these ongoing programs is to understand status and trend in natural resources. Data are usually collected using complex sampling designs including stratification, revisit schedules, finite populations, unequal probabilities of inclusion of sample units, and censored observations. Complex designs intentionally create data that are missing from the complete data that could theoretically be obtained. This “missingness” cannot be ignored in analysis. Data collected by monitoring programs have traditionally been analyzed using the design-based Horvitz–Thompson estimator to obtain point estimates of means and variances over time. However, Horvitz–Thompson point estimates are not capable of supporting inference on temporal trend or the predictor variables that might explain trend, which instead requires model-based inference. The key to applying model-based inference to data arising from complex designs is to include information about the sampling design in the analysis. The statistical concept of ignorability provides a theoretical foundation for meeting this requirement. We show how Bayesian hierarchical models provide a general framework supporting inference on status and trend using data from the National Park Service Inventory and Monitoring Program as examples. Supplemental Materials Code and data for implementing the analyses described here can be accessed here: https://doi.org/10.36967/code-2287025 .</description><subject>Agriculture</subject><subject>Bayesian analysis</subject><subject>Biostatistics</subject><subject>Censorship</subject><subject>Data analysis</subject><subject>Design analysis</subject><subject>Environmental monitoring</subject><subject>Estimates</subject><subject>Health Sciences</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Missing data</subject><subject>Monitoring/Environmental Analysis</subject><subject>National parks</subject><subject>Natural resources</subject><subject>Sampling</subject><subject>Sampling designs</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1v3CAQhq2qkZom_QM9IeVMOjC22T1u0q9I-bikt0poFsOGyIEN4zTa_PqydaXccmFgeJ8RPE3zWcGpAjBfWKHuUIJWEqA1KF_eNYeqQyN1v8T3dQ-LThqlzIfmI_M9gMIe9GHz-4x2niMlcZUHP7IIuYhVonHHkUUO4iL98WnKZScoDTWUYj3EtBFfaSLxHKc7cZ2TjJuUC61HL64ic71Pnvm4OQg0sv_0vx41v75_uz3_KS9vflycry6la0FPsmvJ6HUADO0wDA5B16VrwYFa98aRW3inW23aRecoIAKhCwPi0HvdG3J41JzMc7clPz55nux9fir1E2x1j6YzpsNlTZ3OqQ2N3sYU8lSoTqfBP0SXkw-x9lf9stcAuNgDegZcyczFB7st8YHKziqwe-121m6rdvtPu32pEM4Qb_eafHl9yxvUX-Okhm0</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zachmann, Luke J.</creator><creator>Borgman, Erin M.</creator><creator>Witwicki, Dana L.</creator><creator>Swan, Megan C.</creator><creator>McIntyre, Cheryl</creator><creator>Hobbs, N. Thompson</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6198-0899</orcidid></search><sort><creationdate>20220301</creationdate><title>Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness</title><author>Zachmann, Luke J. ; Borgman, Erin M. ; Witwicki, Dana L. ; Swan, Megan C. ; McIntyre, Cheryl ; Hobbs, N. Thompson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-54a72bf03f4dddc302dc3540c01b67cac8ec2427485caf330a3cfd33d6e267ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Bayesian analysis</topic><topic>Biostatistics</topic><topic>Censorship</topic><topic>Data analysis</topic><topic>Design analysis</topic><topic>Environmental monitoring</topic><topic>Estimates</topic><topic>Health Sciences</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Missing data</topic><topic>Monitoring/Environmental Analysis</topic><topic>National parks</topic><topic>Natural resources</topic><topic>Sampling</topic><topic>Sampling designs</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zachmann, Luke J.</creatorcontrib><creatorcontrib>Borgman, Erin M.</creatorcontrib><creatorcontrib>Witwicki, Dana L.</creatorcontrib><creatorcontrib>Swan, Megan C.</creatorcontrib><creatorcontrib>McIntyre, Cheryl</creatorcontrib><creatorcontrib>Hobbs, N. Thompson</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zachmann, Luke J.</au><au>Borgman, Erin M.</au><au>Witwicki, Dana L.</au><au>Swan, Megan C.</au><au>McIntyre, Cheryl</au><au>Hobbs, N. Thompson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>27</volume><issue>1</issue><spage>125</spage><epage>148</epage><pages>125-148</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>We describe the application of Bayesian hierarchical models to the analysis of data from long-term, environmental monitoring programs. The goal of these ongoing programs is to understand status and trend in natural resources. Data are usually collected using complex sampling designs including stratification, revisit schedules, finite populations, unequal probabilities of inclusion of sample units, and censored observations. Complex designs intentionally create data that are missing from the complete data that could theoretically be obtained. This “missingness” cannot be ignored in analysis. Data collected by monitoring programs have traditionally been analyzed using the design-based Horvitz–Thompson estimator to obtain point estimates of means and variances over time. However, Horvitz–Thompson point estimates are not capable of supporting inference on temporal trend or the predictor variables that might explain trend, which instead requires model-based inference. The key to applying model-based inference to data arising from complex designs is to include information about the sampling design in the analysis. The statistical concept of ignorability provides a theoretical foundation for meeting this requirement. We show how Bayesian hierarchical models provide a general framework supporting inference on status and trend using data from the National Park Service Inventory and Monitoring Program as examples. Supplemental Materials Code and data for implementing the analyses described here can be accessed here: https://doi.org/10.36967/code-2287025 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13253-021-00473-z</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6198-0899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-7117
ispartof Journal of agricultural, biological, and environmental statistics, 2022-03, Vol.27 (1), p.125-148
issn 1085-7117
1537-2693
language eng
recordid cdi_proquest_journals_2637577539
source SpringerLink Journals
subjects Agriculture
Bayesian analysis
Biostatistics
Censorship
Data analysis
Design analysis
Environmental monitoring
Estimates
Health Sciences
Inference
Mathematical models
Mathematics and Statistics
Medicine
Missing data
Monitoring/Environmental Analysis
National parks
Natural resources
Sampling
Sampling designs
Statistics
Statistics for Life Sciences
title Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Models%20for%20Analysis%20of%20Inventory%20and%20Monitoring%20Data%20with%20Non-ignorable%20Missingness&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Zachmann,%20Luke%20J.&rft.date=2022-03-01&rft.volume=27&rft.issue=1&rft.spage=125&rft.epage=148&rft.pages=125-148&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-021-00473-z&rft_dat=%3Cgale_proqu%3EA696200389%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637577539&rft_id=info:pmid/&rft_galeid=A696200389&rfr_iscdi=true