A state bit recovery algorithm with TMDTO attack on Lizard and Grain-128a

We propose a deterministic algorithm to recover some state bits of any FSR-based stream cipher knowing some keystream bits by fixing some state bits. This algorithm searches for the number of fixing bits as minimum as possible. Applying the algorithm, we could recover 10 , 11 , … , 24 state bits by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2022-03, Vol.90 (3), p.489-521
Hauptverfasser: Dalai, Deepak Kumar, Pal, Santu, Sarkar, Santanu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 3
container_start_page 489
container_title Designs, codes, and cryptography
container_volume 90
creator Dalai, Deepak Kumar
Pal, Santu
Sarkar, Santanu
description We propose a deterministic algorithm to recover some state bits of any FSR-based stream cipher knowing some keystream bits by fixing some state bits. This algorithm searches for the number of fixing bits as minimum as possible. Applying the algorithm, we could recover 10 , 11 , … , 24 state bits by fixing 10, 12, 14, 16, 18, 20, 22, 24, 38, 40, 42, 44, 46, 48, 50 state bits respectively for Lizard and 35, 48 state bits by fixing 34, 54 state bits respectively for Grain-128a. The result on Lizard beats the previous result, which can recover 14 state bits by fixing 30 state bits and the result on Grain-128a is the first one in this direction. Further, we present the Time-Memory-Data Trade-Off (TMDTO) curve by using the number of recovering and fixing state bits. Then we use the obtained results on the number of recovering and fixing state bits of Lizard and Grain 128a to implement the TMDTO attack to recover other state bits of these two ciphers. Our results supersede the previous result by Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018) (i.e., T = M = D = 2 54 ) on TMDTO attack on Lizard. The best results for Lizard are T = M = 2 54 , D = 2 48 which requires 64 times lesser data than in Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018); T = 2 52 , M = D = 2 53 or, D = 2 52 , M = T = 2 53 which improves the minimization of max { T , M , D } ; T = 2 50 , M = D = 2 54 , which reduces the time complexity by 16 times than in Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018); T = 2 42 , M = D = 2 60 which reduces the time complexity by 2 18 times with respect to overall complexity of Lizard claimed by Hamann et al. in FSE 2017.
doi_str_mv 10.1007/s10623-021-00984-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637576462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637576462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5bf23f515eb8236256eb1e0456bae119f139e90d705ce17ee0c0cda7f3c7edce3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvu7DpOxqpAqVTUpcyW41xKSpsU24DKrydQJDaWe8v73kkfY5cI1whgbiJCJpUAiQKgyEdCHbEBaqOE0Xl2zAZQSC0QpDxlZzGuAQAVyAGbjXlMLhEvm8QD-e6dwp67zaoLTXre8o_-8uXj7XLBXUrOv_Cu5fPm04WKu7bi0-CaVqDM3Tk7qd0m0sVvDtnT_d1y8iDmi-lsMp4Lr7BIQpe1VLVGTWUuVSZ1RiUSjHRWOkIsalQFFVAZ0J7QEIEHXzlTK2-o8qSG7Oqwuwvd6xvFZNfdW2j7l1ZmymiTjXoVQyYPLR-6GAPVdhearQt7i2C_ldmDMtsrsz_KrOohdYBiX25XFP6m_6G-ALA6bQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637576462</pqid></control><display><type>article</type><title>A state bit recovery algorithm with TMDTO attack on Lizard and Grain-128a</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dalai, Deepak Kumar ; Pal, Santu ; Sarkar, Santanu</creator><creatorcontrib>Dalai, Deepak Kumar ; Pal, Santu ; Sarkar, Santanu</creatorcontrib><description>We propose a deterministic algorithm to recover some state bits of any FSR-based stream cipher knowing some keystream bits by fixing some state bits. This algorithm searches for the number of fixing bits as minimum as possible. Applying the algorithm, we could recover 10 , 11 , … , 24 state bits by fixing 10, 12, 14, 16, 18, 20, 22, 24, 38, 40, 42, 44, 46, 48, 50 state bits respectively for Lizard and 35, 48 state bits by fixing 34, 54 state bits respectively for Grain-128a. The result on Lizard beats the previous result, which can recover 14 state bits by fixing 30 state bits and the result on Grain-128a is the first one in this direction. Further, we present the Time-Memory-Data Trade-Off (TMDTO) curve by using the number of recovering and fixing state bits. Then we use the obtained results on the number of recovering and fixing state bits of Lizard and Grain 128a to implement the TMDTO attack to recover other state bits of these two ciphers. Our results supersede the previous result by Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018) (i.e., T = M = D = 2 54 ) on TMDTO attack on Lizard. The best results for Lizard are T = M = 2 54 , D = 2 48 which requires 64 times lesser data than in Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018); T = 2 52 , M = D = 2 53 or, D = 2 52 , M = T = 2 53 which improves the minimization of max { T , M , D } ; T = 2 50 , M = D = 2 54 , which reduces the time complexity by 16 times than in Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018); T = 2 42 , M = D = 2 60 which reduces the time complexity by 2 18 times with respect to overall complexity of Lizard claimed by Hamann et al. in FSE 2017.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-021-00984-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Coding and Information Theory ; Complexity ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Encryption ; Fixing ; Lizards</subject><ispartof>Designs, codes, and cryptography, 2022-03, Vol.90 (3), p.489-521</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5bf23f515eb8236256eb1e0456bae119f139e90d705ce17ee0c0cda7f3c7edce3</citedby><cites>FETCH-LOGICAL-c319t-5bf23f515eb8236256eb1e0456bae119f139e90d705ce17ee0c0cda7f3c7edce3</cites><orcidid>0000-0001-6821-920X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-021-00984-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-021-00984-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dalai, Deepak Kumar</creatorcontrib><creatorcontrib>Pal, Santu</creatorcontrib><creatorcontrib>Sarkar, Santanu</creatorcontrib><title>A state bit recovery algorithm with TMDTO attack on Lizard and Grain-128a</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>We propose a deterministic algorithm to recover some state bits of any FSR-based stream cipher knowing some keystream bits by fixing some state bits. This algorithm searches for the number of fixing bits as minimum as possible. Applying the algorithm, we could recover 10 , 11 , … , 24 state bits by fixing 10, 12, 14, 16, 18, 20, 22, 24, 38, 40, 42, 44, 46, 48, 50 state bits respectively for Lizard and 35, 48 state bits by fixing 34, 54 state bits respectively for Grain-128a. The result on Lizard beats the previous result, which can recover 14 state bits by fixing 30 state bits and the result on Grain-128a is the first one in this direction. Further, we present the Time-Memory-Data Trade-Off (TMDTO) curve by using the number of recovering and fixing state bits. Then we use the obtained results on the number of recovering and fixing state bits of Lizard and Grain 128a to implement the TMDTO attack to recover other state bits of these two ciphers. Our results supersede the previous result by Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018) (i.e., T = M = D = 2 54 ) on TMDTO attack on Lizard. The best results for Lizard are T = M = 2 54 , D = 2 48 which requires 64 times lesser data than in Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018); T = 2 52 , M = D = 2 53 or, D = 2 52 , M = T = 2 53 which improves the minimization of max { T , M , D } ; T = 2 50 , M = D = 2 54 , which reduces the time complexity by 16 times than in Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018); T = 2 42 , M = D = 2 60 which reduces the time complexity by 2 18 times with respect to overall complexity of Lizard claimed by Hamann et al. in FSE 2017.</description><subject>Algorithms</subject><subject>Coding and Information Theory</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Encryption</subject><subject>Fixing</subject><subject>Lizards</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvu7DpOxqpAqVTUpcyW41xKSpsU24DKrydQJDaWe8v73kkfY5cI1whgbiJCJpUAiQKgyEdCHbEBaqOE0Xl2zAZQSC0QpDxlZzGuAQAVyAGbjXlMLhEvm8QD-e6dwp67zaoLTXre8o_-8uXj7XLBXUrOv_Cu5fPm04WKu7bi0-CaVqDM3Tk7qd0m0sVvDtnT_d1y8iDmi-lsMp4Lr7BIQpe1VLVGTWUuVSZ1RiUSjHRWOkIsalQFFVAZ0J7QEIEHXzlTK2-o8qSG7Oqwuwvd6xvFZNfdW2j7l1ZmymiTjXoVQyYPLR-6GAPVdhearQt7i2C_ldmDMtsrsz_KrOohdYBiX25XFP6m_6G-ALA6bQc</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Dalai, Deepak Kumar</creator><creator>Pal, Santu</creator><creator>Sarkar, Santanu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6821-920X</orcidid></search><sort><creationdate>20220301</creationdate><title>A state bit recovery algorithm with TMDTO attack on Lizard and Grain-128a</title><author>Dalai, Deepak Kumar ; Pal, Santu ; Sarkar, Santanu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5bf23f515eb8236256eb1e0456bae119f139e90d705ce17ee0c0cda7f3c7edce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coding and Information Theory</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Encryption</topic><topic>Fixing</topic><topic>Lizards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalai, Deepak Kumar</creatorcontrib><creatorcontrib>Pal, Santu</creatorcontrib><creatorcontrib>Sarkar, Santanu</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalai, Deepak Kumar</au><au>Pal, Santu</au><au>Sarkar, Santanu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A state bit recovery algorithm with TMDTO attack on Lizard and Grain-128a</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>90</volume><issue>3</issue><spage>489</spage><epage>521</epage><pages>489-521</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>We propose a deterministic algorithm to recover some state bits of any FSR-based stream cipher knowing some keystream bits by fixing some state bits. This algorithm searches for the number of fixing bits as minimum as possible. Applying the algorithm, we could recover 10 , 11 , … , 24 state bits by fixing 10, 12, 14, 16, 18, 20, 22, 24, 38, 40, 42, 44, 46, 48, 50 state bits respectively for Lizard and 35, 48 state bits by fixing 34, 54 state bits respectively for Grain-128a. The result on Lizard beats the previous result, which can recover 14 state bits by fixing 30 state bits and the result on Grain-128a is the first one in this direction. Further, we present the Time-Memory-Data Trade-Off (TMDTO) curve by using the number of recovering and fixing state bits. Then we use the obtained results on the number of recovering and fixing state bits of Lizard and Grain 128a to implement the TMDTO attack to recover other state bits of these two ciphers. Our results supersede the previous result by Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018) (i.e., T = M = D = 2 54 ) on TMDTO attack on Lizard. The best results for Lizard are T = M = 2 54 , D = 2 48 which requires 64 times lesser data than in Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018); T = 2 52 , M = D = 2 53 or, D = 2 52 , M = T = 2 53 which improves the minimization of max { T , M , D } ; T = 2 50 , M = D = 2 54 , which reduces the time complexity by 16 times than in Maitra et al. (IEEE Trans Comput 67(5):733–739, 2018); T = 2 42 , M = D = 2 60 which reduces the time complexity by 2 18 times with respect to overall complexity of Lizard claimed by Hamann et al. in FSE 2017.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-021-00984-3</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-6821-920X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2022-03, Vol.90 (3), p.489-521
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2637576462
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Coding and Information Theory
Complexity
Computer Science
Cryptology
Discrete Mathematics in Computer Science
Encryption
Fixing
Lizards
title A state bit recovery algorithm with TMDTO attack on Lizard and Grain-128a
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20state%20bit%20recovery%20algorithm%20with%20TMDTO%20attack%20on%20Lizard%20and%20Grain-128a&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Dalai,%20Deepak%20Kumar&rft.date=2022-03-01&rft.volume=90&rft.issue=3&rft.spage=489&rft.epage=521&rft.pages=489-521&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-021-00984-3&rft_dat=%3Cproquest_cross%3E2637576462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637576462&rft_id=info:pmid/&rfr_iscdi=true