A comparison of water–gas shift reaction on ZnO 101¯0 surface and 6Cu cluster deposited over ZnO 101¯0 surface using density functional theory studies

This work has presented a calculated study of the water–gas shift reaction (WGSR) performing on the models of ZnO 10 1 ¯ 0 only and six-atomic copper cluster deposited on the ZnO surfaces (6Cu/ZnO) using density functional theory (DFT). The most stable configurations of ZnO and 6Cu/ZnO surfaces were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2022, Vol.28 (4)
Hauptverfasser: Cong, Vo Thanh, Van Son, Nguyen, Diem, Do Quy, Pham, Son Quynh Thai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of molecular modeling
container_volume 28
creator Cong, Vo Thanh
Van Son, Nguyen
Diem, Do Quy
Pham, Son Quynh Thai
description This work has presented a calculated study of the water–gas shift reaction (WGSR) performing on the models of ZnO 10 1 ¯ 0 only and six-atomic copper cluster deposited on the ZnO surfaces (6Cu/ZnO) using density functional theory (DFT). The most stable configurations of ZnO and 6Cu/ZnO surfaces were found and used for the mechanism calculations of WGSR. The carboxyl mechanism of WGSR was proposed to find the reaction pathway. Based on this pathway, WGSR occurred at the elementary reaction of COOH intermediate formation as the rate-controlling step on 6Cu/ZnO surface, and the elementary reaction of H–H association as the rate-controlling step on ZnO surface, in which the highest activation energies were calculated as 1.05 eV and 1.56 eV for 6Cu/ZnO and ZnO surfaces, respectively. These calculations indicated that the 6Cu/ZnO was more favorable and more effective than ZnO as a catalyst for WGSR. In addition, the nature of bonds of CO and H 2 O adsorption on ZnO and 6Cu/ZnO surfaces was also analyzed using the local density of states (LDOS) and electron density difference (EDD) methods. Graphical abstract
doi_str_mv 10.1007/s00894-022-05057-3
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2637575842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637575842</sourcerecordid><originalsourceid>FETCH-LOGICAL-p723-18cb72d12b86a6ce0cb2bc0d6703a53bcf034d96bcbddc1ba1e3c0066b6934513</originalsourceid><addsrcrecordid>eNptkctKAzEUhoMoWGpfwFXA9ehJMsnMLEvxBoVuunIz5DbtlDoZk4nizndw50v4Dj6KT2LaCm5cHQ7n-38OfAidE7gkAMVVACirPANKM-DAi4wdoRFUeZlxoOwYjYggkNEqh1M0CWEDAIRywSkdoY8p1u6xl74NrsOuwS9ysP777X0lAw7rthmwt1IP7e7a4YdugQmQr0_AIfpGaotlZ7CYRay3MaQoNrZ3oR2swe45rf8kYmi7VeK6hL3iJnb7ernFw9o6_4rDEE1rwxk6aeQ22MnvHKPlzfVydpfNF7f3s-k86wvKMlJqVVBDqCqFFNqCVlRpMKIAJjlTugGWm0oorYzRRElimQYQQomK5ZywMbo41PbePUUbhnrjok_vhJoKVvCClzlNFDtQoffpe-v_KAL1TkN90FAnDfVeQ83YD6nTfjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637575842</pqid></control><display><type>article</type><title>A comparison of water–gas shift reaction on ZnO 101¯0 surface and 6Cu cluster deposited over ZnO 101¯0 surface using density functional theory studies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cong, Vo Thanh ; Van Son, Nguyen ; Diem, Do Quy ; Pham, Son Quynh Thai</creator><creatorcontrib>Cong, Vo Thanh ; Van Son, Nguyen ; Diem, Do Quy ; Pham, Son Quynh Thai</creatorcontrib><description>This work has presented a calculated study of the water–gas shift reaction (WGSR) performing on the models of ZnO 10 1 ¯ 0 only and six-atomic copper cluster deposited on the ZnO surfaces (6Cu/ZnO) using density functional theory (DFT). The most stable configurations of ZnO and 6Cu/ZnO surfaces were found and used for the mechanism calculations of WGSR. The carboxyl mechanism of WGSR was proposed to find the reaction pathway. Based on this pathway, WGSR occurred at the elementary reaction of COOH intermediate formation as the rate-controlling step on 6Cu/ZnO surface, and the elementary reaction of H–H association as the rate-controlling step on ZnO surface, in which the highest activation energies were calculated as 1.05 eV and 1.56 eV for 6Cu/ZnO and ZnO surfaces, respectively. These calculations indicated that the 6Cu/ZnO was more favorable and more effective than ZnO as a catalyst for WGSR. In addition, the nature of bonds of CO and H 2 O adsorption on ZnO and 6Cu/ZnO surfaces was also analyzed using the local density of states (LDOS) and electron density difference (EDD) methods. Graphical abstract</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-022-05057-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Clusters ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Density functional theory ; Electron density ; Molecular Medicine ; Original Paper ; Shift reaction ; Theoretical and Computational Chemistry ; Zinc oxide</subject><ispartof>Journal of molecular modeling, 2022, Vol.28 (4)</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p723-18cb72d12b86a6ce0cb2bc0d6703a53bcf034d96bcbddc1ba1e3c0066b6934513</cites><orcidid>0000-0002-0718-8750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-022-05057-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-022-05057-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cong, Vo Thanh</creatorcontrib><creatorcontrib>Van Son, Nguyen</creatorcontrib><creatorcontrib>Diem, Do Quy</creatorcontrib><creatorcontrib>Pham, Son Quynh Thai</creatorcontrib><title>A comparison of water–gas shift reaction on ZnO 101¯0 surface and 6Cu cluster deposited over ZnO 101¯0 surface using density functional theory studies</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><description>This work has presented a calculated study of the water–gas shift reaction (WGSR) performing on the models of ZnO 10 1 ¯ 0 only and six-atomic copper cluster deposited on the ZnO surfaces (6Cu/ZnO) using density functional theory (DFT). The most stable configurations of ZnO and 6Cu/ZnO surfaces were found and used for the mechanism calculations of WGSR. The carboxyl mechanism of WGSR was proposed to find the reaction pathway. Based on this pathway, WGSR occurred at the elementary reaction of COOH intermediate formation as the rate-controlling step on 6Cu/ZnO surface, and the elementary reaction of H–H association as the rate-controlling step on ZnO surface, in which the highest activation energies were calculated as 1.05 eV and 1.56 eV for 6Cu/ZnO and ZnO surfaces, respectively. These calculations indicated that the 6Cu/ZnO was more favorable and more effective than ZnO as a catalyst for WGSR. In addition, the nature of bonds of CO and H 2 O adsorption on ZnO and 6Cu/ZnO surfaces was also analyzed using the local density of states (LDOS) and electron density difference (EDD) methods. Graphical abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Clusters</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Density functional theory</subject><subject>Electron density</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Shift reaction</subject><subject>Theoretical and Computational Chemistry</subject><subject>Zinc oxide</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkctKAzEUhoMoWGpfwFXA9ehJMsnMLEvxBoVuunIz5DbtlDoZk4nizndw50v4Dj6KT2LaCm5cHQ7n-38OfAidE7gkAMVVACirPANKM-DAi4wdoRFUeZlxoOwYjYggkNEqh1M0CWEDAIRywSkdoY8p1u6xl74NrsOuwS9ysP777X0lAw7rthmwt1IP7e7a4YdugQmQr0_AIfpGaotlZ7CYRay3MaQoNrZ3oR2swe45rf8kYmi7VeK6hL3iJnb7ernFw9o6_4rDEE1rwxk6aeQ22MnvHKPlzfVydpfNF7f3s-k86wvKMlJqVVBDqCqFFNqCVlRpMKIAJjlTugGWm0oorYzRRElimQYQQomK5ZywMbo41PbePUUbhnrjok_vhJoKVvCClzlNFDtQoffpe-v_KAL1TkN90FAnDfVeQ83YD6nTfjI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cong, Vo Thanh</creator><creator>Van Son, Nguyen</creator><creator>Diem, Do Quy</creator><creator>Pham, Son Quynh Thai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0718-8750</orcidid></search><sort><creationdate>2022</creationdate><title>A comparison of water–gas shift reaction on ZnO 101¯0 surface and 6Cu cluster deposited over ZnO 101¯0 surface using density functional theory studies</title><author>Cong, Vo Thanh ; Van Son, Nguyen ; Diem, Do Quy ; Pham, Son Quynh Thai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p723-18cb72d12b86a6ce0cb2bc0d6703a53bcf034d96bcbddc1ba1e3c0066b6934513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Clusters</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Density functional theory</topic><topic>Electron density</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Shift reaction</topic><topic>Theoretical and Computational Chemistry</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cong, Vo Thanh</creatorcontrib><creatorcontrib>Van Son, Nguyen</creatorcontrib><creatorcontrib>Diem, Do Quy</creatorcontrib><creatorcontrib>Pham, Son Quynh Thai</creatorcontrib><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cong, Vo Thanh</au><au>Van Son, Nguyen</au><au>Diem, Do Quy</au><au>Pham, Son Quynh Thai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of water–gas shift reaction on ZnO 101¯0 surface and 6Cu cluster deposited over ZnO 101¯0 surface using density functional theory studies</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><date>2022</date><risdate>2022</risdate><volume>28</volume><issue>4</issue><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>This work has presented a calculated study of the water–gas shift reaction (WGSR) performing on the models of ZnO 10 1 ¯ 0 only and six-atomic copper cluster deposited on the ZnO surfaces (6Cu/ZnO) using density functional theory (DFT). The most stable configurations of ZnO and 6Cu/ZnO surfaces were found and used for the mechanism calculations of WGSR. The carboxyl mechanism of WGSR was proposed to find the reaction pathway. Based on this pathway, WGSR occurred at the elementary reaction of COOH intermediate formation as the rate-controlling step on 6Cu/ZnO surface, and the elementary reaction of H–H association as the rate-controlling step on ZnO surface, in which the highest activation energies were calculated as 1.05 eV and 1.56 eV for 6Cu/ZnO and ZnO surfaces, respectively. These calculations indicated that the 6Cu/ZnO was more favorable and more effective than ZnO as a catalyst for WGSR. In addition, the nature of bonds of CO and H 2 O adsorption on ZnO and 6Cu/ZnO surfaces was also analyzed using the local density of states (LDOS) and electron density difference (EDD) methods. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00894-022-05057-3</doi><orcidid>https://orcid.org/0000-0002-0718-8750</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2022, Vol.28 (4)
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_journals_2637575842
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Clusters
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Density functional theory
Electron density
Molecular Medicine
Original Paper
Shift reaction
Theoretical and Computational Chemistry
Zinc oxide
title A comparison of water–gas shift reaction on ZnO 101¯0 surface and 6Cu cluster deposited over ZnO 101¯0 surface using density functional theory studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20water%E2%80%93gas%20shift%20reaction%20on%20ZnO%20101%C2%AF0%20surface%20and%206Cu%20cluster%20deposited%20over%20ZnO%20101%C2%AF0%20surface%20using%20density%20functional%20theory%20studies&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Cong,%20Vo%20Thanh&rft.date=2022&rft.volume=28&rft.issue=4&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-022-05057-3&rft_dat=%3Cproquest_sprin%3E2637575842%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637575842&rft_id=info:pmid/&rfr_iscdi=true