Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling
This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into accoun...
Gespeichert in:
Veröffentlicht in: | Structural concrete : journal of the FIB 2022-02, Vol.23 (1), p.81-103 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Structural concrete : journal of the FIB |
container_volume | 23 |
creator | Pelle, Angelo Briseghella, Bruno Bergami, Alessandro Vittorio Fiorentino, Gabriele Giaccu, Gian Felice Lavorato, Davide Quaranta, Giuseppe Rasulo, Alessandro Nuti, Camillo |
description | This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion‐induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite‐element method, the loss of reinforcement steel bars cross‐section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross‐sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns. |
doi_str_mv | 10.1002/suco.202100257 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637570828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637570828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-f2d11725f45c3e143aeb206c4c1f342efe499308455c2c61b75626f41db6c93</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTokdO05HVPEnVerQMkfJzXXrktrFbkBdEI_AM_IkuAqCken-6HznXh1CLlk6YmnKr0MHbsRTfhikOiIDpiRLVC6K49iLXCSCKXVKzkJYR0ns5YC8L8wGvz4-G9yibdDuKOyhNUBrXFWvxnnqNPVorHYesKHgLHjcIa29aZYY57bb2EC7CHsKq9bFPYboaGzT9YT3LhhnaWWbaFVXPtC6g-fW2OU5OdFVG_Dipw7J_O52MXlIprP7x8nNNIFMKpVo3jCmuNRCQoZMZBXWPM1BANOZ4KhRjMdZWggpgUPOaiVznmvBmjqHcTYkV73r1ruXDsOuXLvO23iw5HmmpEoLXkTVqFdB_Dd41OXWm03l9yVLy0Oo5SHh8jfhCIx74M20uP9HXc6fJrM_9hsKzYRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637570828</pqid></control><display><type>article</type><title>Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pelle, Angelo ; Briseghella, Bruno ; Bergami, Alessandro Vittorio ; Fiorentino, Gabriele ; Giaccu, Gian Felice ; Lavorato, Davide ; Quaranta, Giuseppe ; Rasulo, Alessandro ; Nuti, Camillo</creator><creatorcontrib>Pelle, Angelo ; Briseghella, Bruno ; Bergami, Alessandro Vittorio ; Fiorentino, Gabriele ; Giaccu, Gian Felice ; Lavorato, Davide ; Quaranta, Giuseppe ; Rasulo, Alessandro ; Nuti, Camillo</creatorcontrib><description>This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion‐induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite‐element method, the loss of reinforcement steel bars cross‐section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross‐sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns.</description><identifier>ISSN: 1464-4177</identifier><identifier>EISSN: 1751-7648</identifier><identifier>DOI: 10.1002/suco.202100257</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Aging (artificial) ; bridge column ; Buckling ; chloride ; Chlorides ; Columns (structural) ; Concrete bridges ; Corrosion ; Corrosion currents ; Corrosion effects ; finite‐element analysis ; generalized corrosion ; multiphysics analysis ; Nonlinear response ; Partial differential equations ; pitting corrosion ; Rebar ; rebar buckling ; Reinforced concrete ; Reinforcing steels ; seismic response ; Temperature effects ; Time dependence</subject><ispartof>Structural concrete : journal of the FIB, 2022-02, Vol.23 (1), p.81-103</ispartof><rights>2021 The Authors. Structural Concrete published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-f2d11725f45c3e143aeb206c4c1f342efe499308455c2c61b75626f41db6c93</citedby><cites>FETCH-LOGICAL-c3577-f2d11725f45c3e143aeb206c4c1f342efe499308455c2c61b75626f41db6c93</cites><orcidid>0000-0002-7761-2190 ; 0000-0001-5842-7531 ; 0000-0001-8295-0912 ; 0000-0002-0385-201X ; 0000-0002-8002-2298 ; 0000-0001-7753-1975 ; 0000-0002-6444-0473 ; 0000-0003-4911-1812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsuco.202100257$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsuco.202100257$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pelle, Angelo</creatorcontrib><creatorcontrib>Briseghella, Bruno</creatorcontrib><creatorcontrib>Bergami, Alessandro Vittorio</creatorcontrib><creatorcontrib>Fiorentino, Gabriele</creatorcontrib><creatorcontrib>Giaccu, Gian Felice</creatorcontrib><creatorcontrib>Lavorato, Davide</creatorcontrib><creatorcontrib>Quaranta, Giuseppe</creatorcontrib><creatorcontrib>Rasulo, Alessandro</creatorcontrib><creatorcontrib>Nuti, Camillo</creatorcontrib><title>Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling</title><title>Structural concrete : journal of the FIB</title><description>This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion‐induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite‐element method, the loss of reinforcement steel bars cross‐section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross‐sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns.</description><subject>Aging (artificial)</subject><subject>bridge column</subject><subject>Buckling</subject><subject>chloride</subject><subject>Chlorides</subject><subject>Columns (structural)</subject><subject>Concrete bridges</subject><subject>Corrosion</subject><subject>Corrosion currents</subject><subject>Corrosion effects</subject><subject>finite‐element analysis</subject><subject>generalized corrosion</subject><subject>multiphysics analysis</subject><subject>Nonlinear response</subject><subject>Partial differential equations</subject><subject>pitting corrosion</subject><subject>Rebar</subject><subject>rebar buckling</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>seismic response</subject><subject>Temperature effects</subject><subject>Time dependence</subject><issn>1464-4177</issn><issn>1751-7648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL1OwzAUhS0EEqWwMltiTokdO05HVPEnVerQMkfJzXXrktrFbkBdEI_AM_IkuAqCken-6HznXh1CLlk6YmnKr0MHbsRTfhikOiIDpiRLVC6K49iLXCSCKXVKzkJYR0ns5YC8L8wGvz4-G9yibdDuKOyhNUBrXFWvxnnqNPVorHYesKHgLHjcIa29aZYY57bb2EC7CHsKq9bFPYboaGzT9YT3LhhnaWWbaFVXPtC6g-fW2OU5OdFVG_Dipw7J_O52MXlIprP7x8nNNIFMKpVo3jCmuNRCQoZMZBXWPM1BANOZ4KhRjMdZWggpgUPOaiVznmvBmjqHcTYkV73r1ruXDsOuXLvO23iw5HmmpEoLXkTVqFdB_Dd41OXWm03l9yVLy0Oo5SHh8jfhCIx74M20uP9HXc6fJrM_9hsKzYRU</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Pelle, Angelo</creator><creator>Briseghella, Bruno</creator><creator>Bergami, Alessandro Vittorio</creator><creator>Fiorentino, Gabriele</creator><creator>Giaccu, Gian Felice</creator><creator>Lavorato, Davide</creator><creator>Quaranta, Giuseppe</creator><creator>Rasulo, Alessandro</creator><creator>Nuti, Camillo</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7761-2190</orcidid><orcidid>https://orcid.org/0000-0001-5842-7531</orcidid><orcidid>https://orcid.org/0000-0001-8295-0912</orcidid><orcidid>https://orcid.org/0000-0002-0385-201X</orcidid><orcidid>https://orcid.org/0000-0002-8002-2298</orcidid><orcidid>https://orcid.org/0000-0001-7753-1975</orcidid><orcidid>https://orcid.org/0000-0002-6444-0473</orcidid><orcidid>https://orcid.org/0000-0003-4911-1812</orcidid></search><sort><creationdate>202202</creationdate><title>Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling</title><author>Pelle, Angelo ; Briseghella, Bruno ; Bergami, Alessandro Vittorio ; Fiorentino, Gabriele ; Giaccu, Gian Felice ; Lavorato, Davide ; Quaranta, Giuseppe ; Rasulo, Alessandro ; Nuti, Camillo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-f2d11725f45c3e143aeb206c4c1f342efe499308455c2c61b75626f41db6c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging (artificial)</topic><topic>bridge column</topic><topic>Buckling</topic><topic>chloride</topic><topic>Chlorides</topic><topic>Columns (structural)</topic><topic>Concrete bridges</topic><topic>Corrosion</topic><topic>Corrosion currents</topic><topic>Corrosion effects</topic><topic>finite‐element analysis</topic><topic>generalized corrosion</topic><topic>multiphysics analysis</topic><topic>Nonlinear response</topic><topic>Partial differential equations</topic><topic>pitting corrosion</topic><topic>Rebar</topic><topic>rebar buckling</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>seismic response</topic><topic>Temperature effects</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelle, Angelo</creatorcontrib><creatorcontrib>Briseghella, Bruno</creatorcontrib><creatorcontrib>Bergami, Alessandro Vittorio</creatorcontrib><creatorcontrib>Fiorentino, Gabriele</creatorcontrib><creatorcontrib>Giaccu, Gian Felice</creatorcontrib><creatorcontrib>Lavorato, Davide</creatorcontrib><creatorcontrib>Quaranta, Giuseppe</creatorcontrib><creatorcontrib>Rasulo, Alessandro</creatorcontrib><creatorcontrib>Nuti, Camillo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Structural concrete : journal of the FIB</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelle, Angelo</au><au>Briseghella, Bruno</au><au>Bergami, Alessandro Vittorio</au><au>Fiorentino, Gabriele</au><au>Giaccu, Gian Felice</au><au>Lavorato, Davide</au><au>Quaranta, Giuseppe</au><au>Rasulo, Alessandro</au><au>Nuti, Camillo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling</atitle><jtitle>Structural concrete : journal of the FIB</jtitle><date>2022-02</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>81</spage><epage>103</epage><pages>81-103</pages><issn>1464-4177</issn><eissn>1751-7648</eissn><abstract>This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion‐induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite‐element method, the loss of reinforcement steel bars cross‐section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross‐sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/suco.202100257</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7761-2190</orcidid><orcidid>https://orcid.org/0000-0001-5842-7531</orcidid><orcidid>https://orcid.org/0000-0001-8295-0912</orcidid><orcidid>https://orcid.org/0000-0002-0385-201X</orcidid><orcidid>https://orcid.org/0000-0002-8002-2298</orcidid><orcidid>https://orcid.org/0000-0001-7753-1975</orcidid><orcidid>https://orcid.org/0000-0002-6444-0473</orcidid><orcidid>https://orcid.org/0000-0003-4911-1812</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4177 |
ispartof | Structural concrete : journal of the FIB, 2022-02, Vol.23 (1), p.81-103 |
issn | 1464-4177 1751-7648 |
language | eng |
recordid | cdi_proquest_journals_2637570828 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aging (artificial) bridge column Buckling chloride Chlorides Columns (structural) Concrete bridges Corrosion Corrosion currents Corrosion effects finite‐element analysis generalized corrosion multiphysics analysis Nonlinear response Partial differential equations pitting corrosion Rebar rebar buckling Reinforced concrete Reinforcing steels seismic response Temperature effects Time dependence |
title | Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%E2%80%90dependent%20cyclic%20behavior%20of%20reinforced%20concrete%20bridge%20columns%20under%20chlorides%E2%80%90induced%20corrosion%20and%20rebars%20buckling&rft.jtitle=Structural%20concrete%20:%20journal%20of%20the%20FIB&rft.au=Pelle,%20Angelo&rft.date=2022-02&rft.volume=23&rft.issue=1&rft.spage=81&rft.epage=103&rft.pages=81-103&rft.issn=1464-4177&rft.eissn=1751-7648&rft_id=info:doi/10.1002/suco.202100257&rft_dat=%3Cproquest_cross%3E2637570828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637570828&rft_id=info:pmid/&rfr_iscdi=true |