Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling

This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into accoun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural concrete : journal of the FIB 2022-02, Vol.23 (1), p.81-103
Hauptverfasser: Pelle, Angelo, Briseghella, Bruno, Bergami, Alessandro Vittorio, Fiorentino, Gabriele, Giaccu, Gian Felice, Lavorato, Davide, Quaranta, Giuseppe, Rasulo, Alessandro, Nuti, Camillo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 1
container_start_page 81
container_title Structural concrete : journal of the FIB
container_volume 23
creator Pelle, Angelo
Briseghella, Bruno
Bergami, Alessandro Vittorio
Fiorentino, Gabriele
Giaccu, Gian Felice
Lavorato, Davide
Quaranta, Giuseppe
Rasulo, Alessandro
Nuti, Camillo
description This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion‐induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite‐element method, the loss of reinforcement steel bars cross‐section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross‐sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns.
doi_str_mv 10.1002/suco.202100257
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637570828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637570828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-f2d11725f45c3e143aeb206c4c1f342efe499308455c2c61b75626f41db6c93</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTokdO05HVPEnVerQMkfJzXXrktrFbkBdEI_AM_IkuAqCken-6HznXh1CLlk6YmnKr0MHbsRTfhikOiIDpiRLVC6K49iLXCSCKXVKzkJYR0ns5YC8L8wGvz4-G9yibdDuKOyhNUBrXFWvxnnqNPVorHYesKHgLHjcIa29aZYY57bb2EC7CHsKq9bFPYboaGzT9YT3LhhnaWWbaFVXPtC6g-fW2OU5OdFVG_Dipw7J_O52MXlIprP7x8nNNIFMKpVo3jCmuNRCQoZMZBXWPM1BANOZ4KhRjMdZWggpgUPOaiVznmvBmjqHcTYkV73r1ruXDsOuXLvO23iw5HmmpEoLXkTVqFdB_Dd41OXWm03l9yVLy0Oo5SHh8jfhCIx74M20uP9HXc6fJrM_9hsKzYRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637570828</pqid></control><display><type>article</type><title>Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pelle, Angelo ; Briseghella, Bruno ; Bergami, Alessandro Vittorio ; Fiorentino, Gabriele ; Giaccu, Gian Felice ; Lavorato, Davide ; Quaranta, Giuseppe ; Rasulo, Alessandro ; Nuti, Camillo</creator><creatorcontrib>Pelle, Angelo ; Briseghella, Bruno ; Bergami, Alessandro Vittorio ; Fiorentino, Gabriele ; Giaccu, Gian Felice ; Lavorato, Davide ; Quaranta, Giuseppe ; Rasulo, Alessandro ; Nuti, Camillo</creatorcontrib><description>This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion‐induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite‐element method, the loss of reinforcement steel bars cross‐section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross‐sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns.</description><identifier>ISSN: 1464-4177</identifier><identifier>EISSN: 1751-7648</identifier><identifier>DOI: 10.1002/suco.202100257</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Aging (artificial) ; bridge column ; Buckling ; chloride ; Chlorides ; Columns (structural) ; Concrete bridges ; Corrosion ; Corrosion currents ; Corrosion effects ; finite‐element analysis ; generalized corrosion ; multiphysics analysis ; Nonlinear response ; Partial differential equations ; pitting corrosion ; Rebar ; rebar buckling ; Reinforced concrete ; Reinforcing steels ; seismic response ; Temperature effects ; Time dependence</subject><ispartof>Structural concrete : journal of the FIB, 2022-02, Vol.23 (1), p.81-103</ispartof><rights>2021 The Authors. Structural Concrete published by John Wiley &amp; Sons Ltd on behalf of International Federation for Structural Concrete</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-f2d11725f45c3e143aeb206c4c1f342efe499308455c2c61b75626f41db6c93</citedby><cites>FETCH-LOGICAL-c3577-f2d11725f45c3e143aeb206c4c1f342efe499308455c2c61b75626f41db6c93</cites><orcidid>0000-0002-7761-2190 ; 0000-0001-5842-7531 ; 0000-0001-8295-0912 ; 0000-0002-0385-201X ; 0000-0002-8002-2298 ; 0000-0001-7753-1975 ; 0000-0002-6444-0473 ; 0000-0003-4911-1812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsuco.202100257$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsuco.202100257$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pelle, Angelo</creatorcontrib><creatorcontrib>Briseghella, Bruno</creatorcontrib><creatorcontrib>Bergami, Alessandro Vittorio</creatorcontrib><creatorcontrib>Fiorentino, Gabriele</creatorcontrib><creatorcontrib>Giaccu, Gian Felice</creatorcontrib><creatorcontrib>Lavorato, Davide</creatorcontrib><creatorcontrib>Quaranta, Giuseppe</creatorcontrib><creatorcontrib>Rasulo, Alessandro</creatorcontrib><creatorcontrib>Nuti, Camillo</creatorcontrib><title>Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling</title><title>Structural concrete : journal of the FIB</title><description>This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion‐induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite‐element method, the loss of reinforcement steel bars cross‐section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross‐sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns.</description><subject>Aging (artificial)</subject><subject>bridge column</subject><subject>Buckling</subject><subject>chloride</subject><subject>Chlorides</subject><subject>Columns (structural)</subject><subject>Concrete bridges</subject><subject>Corrosion</subject><subject>Corrosion currents</subject><subject>Corrosion effects</subject><subject>finite‐element analysis</subject><subject>generalized corrosion</subject><subject>multiphysics analysis</subject><subject>Nonlinear response</subject><subject>Partial differential equations</subject><subject>pitting corrosion</subject><subject>Rebar</subject><subject>rebar buckling</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>seismic response</subject><subject>Temperature effects</subject><subject>Time dependence</subject><issn>1464-4177</issn><issn>1751-7648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL1OwzAUhS0EEqWwMltiTokdO05HVPEnVerQMkfJzXXrktrFbkBdEI_AM_IkuAqCken-6HznXh1CLlk6YmnKr0MHbsRTfhikOiIDpiRLVC6K49iLXCSCKXVKzkJYR0ns5YC8L8wGvz4-G9yibdDuKOyhNUBrXFWvxnnqNPVorHYesKHgLHjcIa29aZYY57bb2EC7CHsKq9bFPYboaGzT9YT3LhhnaWWbaFVXPtC6g-fW2OU5OdFVG_Dipw7J_O52MXlIprP7x8nNNIFMKpVo3jCmuNRCQoZMZBXWPM1BANOZ4KhRjMdZWggpgUPOaiVznmvBmjqHcTYkV73r1ruXDsOuXLvO23iw5HmmpEoLXkTVqFdB_Dd41OXWm03l9yVLy0Oo5SHh8jfhCIx74M20uP9HXc6fJrM_9hsKzYRU</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Pelle, Angelo</creator><creator>Briseghella, Bruno</creator><creator>Bergami, Alessandro Vittorio</creator><creator>Fiorentino, Gabriele</creator><creator>Giaccu, Gian Felice</creator><creator>Lavorato, Davide</creator><creator>Quaranta, Giuseppe</creator><creator>Rasulo, Alessandro</creator><creator>Nuti, Camillo</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7761-2190</orcidid><orcidid>https://orcid.org/0000-0001-5842-7531</orcidid><orcidid>https://orcid.org/0000-0001-8295-0912</orcidid><orcidid>https://orcid.org/0000-0002-0385-201X</orcidid><orcidid>https://orcid.org/0000-0002-8002-2298</orcidid><orcidid>https://orcid.org/0000-0001-7753-1975</orcidid><orcidid>https://orcid.org/0000-0002-6444-0473</orcidid><orcidid>https://orcid.org/0000-0003-4911-1812</orcidid></search><sort><creationdate>202202</creationdate><title>Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling</title><author>Pelle, Angelo ; Briseghella, Bruno ; Bergami, Alessandro Vittorio ; Fiorentino, Gabriele ; Giaccu, Gian Felice ; Lavorato, Davide ; Quaranta, Giuseppe ; Rasulo, Alessandro ; Nuti, Camillo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-f2d11725f45c3e143aeb206c4c1f342efe499308455c2c61b75626f41db6c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging (artificial)</topic><topic>bridge column</topic><topic>Buckling</topic><topic>chloride</topic><topic>Chlorides</topic><topic>Columns (structural)</topic><topic>Concrete bridges</topic><topic>Corrosion</topic><topic>Corrosion currents</topic><topic>Corrosion effects</topic><topic>finite‐element analysis</topic><topic>generalized corrosion</topic><topic>multiphysics analysis</topic><topic>Nonlinear response</topic><topic>Partial differential equations</topic><topic>pitting corrosion</topic><topic>Rebar</topic><topic>rebar buckling</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>seismic response</topic><topic>Temperature effects</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelle, Angelo</creatorcontrib><creatorcontrib>Briseghella, Bruno</creatorcontrib><creatorcontrib>Bergami, Alessandro Vittorio</creatorcontrib><creatorcontrib>Fiorentino, Gabriele</creatorcontrib><creatorcontrib>Giaccu, Gian Felice</creatorcontrib><creatorcontrib>Lavorato, Davide</creatorcontrib><creatorcontrib>Quaranta, Giuseppe</creatorcontrib><creatorcontrib>Rasulo, Alessandro</creatorcontrib><creatorcontrib>Nuti, Camillo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Structural concrete : journal of the FIB</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelle, Angelo</au><au>Briseghella, Bruno</au><au>Bergami, Alessandro Vittorio</au><au>Fiorentino, Gabriele</au><au>Giaccu, Gian Felice</au><au>Lavorato, Davide</au><au>Quaranta, Giuseppe</au><au>Rasulo, Alessandro</au><au>Nuti, Camillo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling</atitle><jtitle>Structural concrete : journal of the FIB</jtitle><date>2022-02</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>81</spage><epage>103</epage><pages>81-103</pages><issn>1464-4177</issn><eissn>1751-7648</eissn><abstract>This study presents the results of a refined numerical investigation meant at understanding the time‐dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides‐induced corrosion. The chloride ingress in the cross‐section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion‐induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite‐element method, the loss of reinforcement steel bars cross‐section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross‐sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/suco.202100257</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7761-2190</orcidid><orcidid>https://orcid.org/0000-0001-5842-7531</orcidid><orcidid>https://orcid.org/0000-0001-8295-0912</orcidid><orcidid>https://orcid.org/0000-0002-0385-201X</orcidid><orcidid>https://orcid.org/0000-0002-8002-2298</orcidid><orcidid>https://orcid.org/0000-0001-7753-1975</orcidid><orcidid>https://orcid.org/0000-0002-6444-0473</orcidid><orcidid>https://orcid.org/0000-0003-4911-1812</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-4177
ispartof Structural concrete : journal of the FIB, 2022-02, Vol.23 (1), p.81-103
issn 1464-4177
1751-7648
language eng
recordid cdi_proquest_journals_2637570828
source Wiley Online Library Journals Frontfile Complete
subjects Aging (artificial)
bridge column
Buckling
chloride
Chlorides
Columns (structural)
Concrete bridges
Corrosion
Corrosion currents
Corrosion effects
finite‐element analysis
generalized corrosion
multiphysics analysis
Nonlinear response
Partial differential equations
pitting corrosion
Rebar
rebar buckling
Reinforced concrete
Reinforcing steels
seismic response
Temperature effects
Time dependence
title Time‐dependent cyclic behavior of reinforced concrete bridge columns under chlorides‐induced corrosion and rebars buckling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%E2%80%90dependent%20cyclic%20behavior%20of%20reinforced%20concrete%20bridge%20columns%20under%20chlorides%E2%80%90induced%20corrosion%20and%20rebars%20buckling&rft.jtitle=Structural%20concrete%20:%20journal%20of%20the%20FIB&rft.au=Pelle,%20Angelo&rft.date=2022-02&rft.volume=23&rft.issue=1&rft.spage=81&rft.epage=103&rft.pages=81-103&rft.issn=1464-4177&rft.eissn=1751-7648&rft_id=info:doi/10.1002/suco.202100257&rft_dat=%3Cproquest_cross%3E2637570828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637570828&rft_id=info:pmid/&rfr_iscdi=true