Bulk synthesis of stoichiometric/meteoritic troilite (FeS) by high‐temperature pyrite decomposition and pyrrhotite melting

Stoichiometric troilite (FeS) is a common phase in differentiated and undifferentiated meteorites. It is the endmember of the iron sulfide system. Troilite is important for investigating shock metamorphism in meteorites and studying spectral properties and space weathering of planetary bodies. Thus,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2022-03, Vol.57 (3), p.588-602
Hauptverfasser: Moreau, Juulia‐Gabrielle, Jõeleht, Argo, Aruväli, Jaan, Heikkilä, Mikko J., Stojic, Aleksandra N., Thomberg, Thomas, Plado, Jüri, Hietala, Satu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue 3
container_start_page 588
container_title Meteoritics & planetary science
container_volume 57
creator Moreau, Juulia‐Gabrielle
Jõeleht, Argo
Aruväli, Jaan
Heikkilä, Mikko J.
Stojic, Aleksandra N.
Thomberg, Thomas
Plado, Jüri
Hietala, Satu
description Stoichiometric troilite (FeS) is a common phase in differentiated and undifferentiated meteorites. It is the endmember of the iron sulfide system. Troilite is important for investigating shock metamorphism in meteorites and studying spectral properties and space weathering of planetary bodies. Thus, obtaining coarse‐grained meteoritic troilite in quantities is beneficial for these fields. The previous synthesis of troilite was achieved by pyrite or pyrrhotite heating treatments or chemical syntheses. However, most of these works lacked a visual characterization of the step by step process and the final product, the production of large quantities, and they were not readily advertised to planetary scientists or the meteoritical research community. Here, we illustrate a two‐step heat treatment of pyrite to synthesize troilite. Pyrite powder was decomposed to pyrrhotite at 1023–1073 K for 4–6 h in Ar; the run product was then retrieved and reheated for 1 h at 1498–1598 K in N2 (gas). The minerals were analyzed with a scanning electron microscope, X‐ray diffraction (XRD) at room temperature, and in situ high‐temperature XRD. The primary observation of synthesis from pyrrhotite to troilite is the shift of a major diffraction peak from ~43.2°2θ to ~43.8°2θ. Troilite spectra matched an XRD analysis of natural meteoritic troilite. Slight contamination of Fe was observed during cooling to troilite, and alumina crucibles locally reacted with troilite. The habitus and size of troilite crystals allowed us to store it as large grains rather than powder; 27 g of pyrite yielded 17 g of stochiometric troilite.
doi_str_mv 10.1111/maps.13782
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637562125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637562125</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3602-9c0cc773957366376543769046c4d805f6034133cc2540f12b2d7086d5ea3c1a3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxosouK5efIKAFxW65k-Tbo_r4qqworB6Dtk03WZtm5qkSMGDj-Az-iSmrmfnMDMwv_mG-aLoFMEJCnFVi9ZNEEmneC8aoSyhMUUQ7oceTlmckTQ7jI6c20JIKCLJKPq47qpX4PrGl8ppB0wBnDdaltrUylstr0JRxmqvJfDW6Ep7Bc4XanUB1j0o9ab8_vzyqm6VFb6zCrS9HZBcSVO3xoVF0wDR5MPAlsYPw1pVXjeb4-igEJVTJ391HL0sbp7nd_Hy8fZ-PlvGgjCI40xCKdOUZDQljJGU0SSkDCZMJvkU0oJBkiBCpMQ0gQXCa5yn4d-cKkEkEmQcne10W2veOuU835rONuEkx0GPMowwDdTljpLWOGdVwVura2F7jiAf3OWDu_zX3QCjHfyuK9X_Q_KH2dNqt_MDsHh_Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637562125</pqid></control><display><type>article</type><title>Bulk synthesis of stoichiometric/meteoritic troilite (FeS) by high‐temperature pyrite decomposition and pyrrhotite melting</title><source>Access via Wiley Online Library</source><creator>Moreau, Juulia‐Gabrielle ; Jõeleht, Argo ; Aruväli, Jaan ; Heikkilä, Mikko J. ; Stojic, Aleksandra N. ; Thomberg, Thomas ; Plado, Jüri ; Hietala, Satu</creator><creatorcontrib>Moreau, Juulia‐Gabrielle ; Jõeleht, Argo ; Aruväli, Jaan ; Heikkilä, Mikko J. ; Stojic, Aleksandra N. ; Thomberg, Thomas ; Plado, Jüri ; Hietala, Satu</creatorcontrib><description>Stoichiometric troilite (FeS) is a common phase in differentiated and undifferentiated meteorites. It is the endmember of the iron sulfide system. Troilite is important for investigating shock metamorphism in meteorites and studying spectral properties and space weathering of planetary bodies. Thus, obtaining coarse‐grained meteoritic troilite in quantities is beneficial for these fields. The previous synthesis of troilite was achieved by pyrite or pyrrhotite heating treatments or chemical syntheses. However, most of these works lacked a visual characterization of the step by step process and the final product, the production of large quantities, and they were not readily advertised to planetary scientists or the meteoritical research community. Here, we illustrate a two‐step heat treatment of pyrite to synthesize troilite. Pyrite powder was decomposed to pyrrhotite at 1023–1073 K for 4–6 h in Ar; the run product was then retrieved and reheated for 1 h at 1498–1598 K in N2 (gas). The minerals were analyzed with a scanning electron microscope, X‐ray diffraction (XRD) at room temperature, and in situ high‐temperature XRD. The primary observation of synthesis from pyrrhotite to troilite is the shift of a major diffraction peak from ~43.2°2θ to ~43.8°2θ. Troilite spectra matched an XRD analysis of natural meteoritic troilite. Slight contamination of Fe was observed during cooling to troilite, and alumina crucibles locally reacted with troilite. The habitus and size of troilite crystals allowed us to store it as large grains rather than powder; 27 g of pyrite yielded 17 g of stochiometric troilite.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.13782</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Crucibles ; Crystals ; Decomposition ; Heat treatment ; Iron ; Iron sulfides ; Metamorphism ; Meteorites ; Meteors &amp; meteorites ; Pyrite ; Pyrrhotite ; Room temperature ; Shock metamorphism ; Stoichiometry ; Synthesis ; Troilite ; Weathering ; X-ray diffraction</subject><ispartof>Meteoritics &amp; planetary science, 2022-03, Vol.57 (3), p.588-602</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of The Meteoritical Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3602-9c0cc773957366376543769046c4d805f6034133cc2540f12b2d7086d5ea3c1a3</citedby><cites>FETCH-LOGICAL-a3602-9c0cc773957366376543769046c4d805f6034133cc2540f12b2d7086d5ea3c1a3</cites><orcidid>0000-0002-9037-3243 ; 0000-0003-0069-5589 ; 0000-0001-7473-6043 ; 0000-0002-1434-4934 ; 0000-0001-7241-1050 ; 0000-0002-6027-2089 ; 0000-0002-6803-8350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmaps.13782$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmaps.13782$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Moreau, Juulia‐Gabrielle</creatorcontrib><creatorcontrib>Jõeleht, Argo</creatorcontrib><creatorcontrib>Aruväli, Jaan</creatorcontrib><creatorcontrib>Heikkilä, Mikko J.</creatorcontrib><creatorcontrib>Stojic, Aleksandra N.</creatorcontrib><creatorcontrib>Thomberg, Thomas</creatorcontrib><creatorcontrib>Plado, Jüri</creatorcontrib><creatorcontrib>Hietala, Satu</creatorcontrib><title>Bulk synthesis of stoichiometric/meteoritic troilite (FeS) by high‐temperature pyrite decomposition and pyrrhotite melting</title><title>Meteoritics &amp; planetary science</title><description>Stoichiometric troilite (FeS) is a common phase in differentiated and undifferentiated meteorites. It is the endmember of the iron sulfide system. Troilite is important for investigating shock metamorphism in meteorites and studying spectral properties and space weathering of planetary bodies. Thus, obtaining coarse‐grained meteoritic troilite in quantities is beneficial for these fields. The previous synthesis of troilite was achieved by pyrite or pyrrhotite heating treatments or chemical syntheses. However, most of these works lacked a visual characterization of the step by step process and the final product, the production of large quantities, and they were not readily advertised to planetary scientists or the meteoritical research community. Here, we illustrate a two‐step heat treatment of pyrite to synthesize troilite. Pyrite powder was decomposed to pyrrhotite at 1023–1073 K for 4–6 h in Ar; the run product was then retrieved and reheated for 1 h at 1498–1598 K in N2 (gas). The minerals were analyzed with a scanning electron microscope, X‐ray diffraction (XRD) at room temperature, and in situ high‐temperature XRD. The primary observation of synthesis from pyrrhotite to troilite is the shift of a major diffraction peak from ~43.2°2θ to ~43.8°2θ. Troilite spectra matched an XRD analysis of natural meteoritic troilite. Slight contamination of Fe was observed during cooling to troilite, and alumina crucibles locally reacted with troilite. The habitus and size of troilite crystals allowed us to store it as large grains rather than powder; 27 g of pyrite yielded 17 g of stochiometric troilite.</description><subject>Aluminum oxide</subject><subject>Crucibles</subject><subject>Crystals</subject><subject>Decomposition</subject><subject>Heat treatment</subject><subject>Iron</subject><subject>Iron sulfides</subject><subject>Metamorphism</subject><subject>Meteorites</subject><subject>Meteors &amp; meteorites</subject><subject>Pyrite</subject><subject>Pyrrhotite</subject><subject>Room temperature</subject><subject>Shock metamorphism</subject><subject>Stoichiometry</subject><subject>Synthesis</subject><subject>Troilite</subject><subject>Weathering</subject><subject>X-ray diffraction</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM9KxDAQxosouK5efIKAFxW65k-Tbo_r4qqworB6Dtk03WZtm5qkSMGDj-Az-iSmrmfnMDMwv_mG-aLoFMEJCnFVi9ZNEEmneC8aoSyhMUUQ7oceTlmckTQ7jI6c20JIKCLJKPq47qpX4PrGl8ppB0wBnDdaltrUylstr0JRxmqvJfDW6Ep7Bc4XanUB1j0o9ab8_vzyqm6VFb6zCrS9HZBcSVO3xoVF0wDR5MPAlsYPw1pVXjeb4-igEJVTJ391HL0sbp7nd_Hy8fZ-PlvGgjCI40xCKdOUZDQljJGU0SSkDCZMJvkU0oJBkiBCpMQ0gQXCa5yn4d-cKkEkEmQcne10W2veOuU835rONuEkx0GPMowwDdTljpLWOGdVwVura2F7jiAf3OWDu_zX3QCjHfyuK9X_Q_KH2dNqt_MDsHh_Lg</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Moreau, Juulia‐Gabrielle</creator><creator>Jõeleht, Argo</creator><creator>Aruväli, Jaan</creator><creator>Heikkilä, Mikko J.</creator><creator>Stojic, Aleksandra N.</creator><creator>Thomberg, Thomas</creator><creator>Plado, Jüri</creator><creator>Hietala, Satu</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9037-3243</orcidid><orcidid>https://orcid.org/0000-0003-0069-5589</orcidid><orcidid>https://orcid.org/0000-0001-7473-6043</orcidid><orcidid>https://orcid.org/0000-0002-1434-4934</orcidid><orcidid>https://orcid.org/0000-0001-7241-1050</orcidid><orcidid>https://orcid.org/0000-0002-6027-2089</orcidid><orcidid>https://orcid.org/0000-0002-6803-8350</orcidid></search><sort><creationdate>202203</creationdate><title>Bulk synthesis of stoichiometric/meteoritic troilite (FeS) by high‐temperature pyrite decomposition and pyrrhotite melting</title><author>Moreau, Juulia‐Gabrielle ; Jõeleht, Argo ; Aruväli, Jaan ; Heikkilä, Mikko J. ; Stojic, Aleksandra N. ; Thomberg, Thomas ; Plado, Jüri ; Hietala, Satu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3602-9c0cc773957366376543769046c4d805f6034133cc2540f12b2d7086d5ea3c1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Crucibles</topic><topic>Crystals</topic><topic>Decomposition</topic><topic>Heat treatment</topic><topic>Iron</topic><topic>Iron sulfides</topic><topic>Metamorphism</topic><topic>Meteorites</topic><topic>Meteors &amp; meteorites</topic><topic>Pyrite</topic><topic>Pyrrhotite</topic><topic>Room temperature</topic><topic>Shock metamorphism</topic><topic>Stoichiometry</topic><topic>Synthesis</topic><topic>Troilite</topic><topic>Weathering</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreau, Juulia‐Gabrielle</creatorcontrib><creatorcontrib>Jõeleht, Argo</creatorcontrib><creatorcontrib>Aruväli, Jaan</creatorcontrib><creatorcontrib>Heikkilä, Mikko J.</creatorcontrib><creatorcontrib>Stojic, Aleksandra N.</creatorcontrib><creatorcontrib>Thomberg, Thomas</creatorcontrib><creatorcontrib>Plado, Jüri</creatorcontrib><creatorcontrib>Hietala, Satu</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreau, Juulia‐Gabrielle</au><au>Jõeleht, Argo</au><au>Aruväli, Jaan</au><au>Heikkilä, Mikko J.</au><au>Stojic, Aleksandra N.</au><au>Thomberg, Thomas</au><au>Plado, Jüri</au><au>Hietala, Satu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bulk synthesis of stoichiometric/meteoritic troilite (FeS) by high‐temperature pyrite decomposition and pyrrhotite melting</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><date>2022-03</date><risdate>2022</risdate><volume>57</volume><issue>3</issue><spage>588</spage><epage>602</epage><pages>588-602</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>Stoichiometric troilite (FeS) is a common phase in differentiated and undifferentiated meteorites. It is the endmember of the iron sulfide system. Troilite is important for investigating shock metamorphism in meteorites and studying spectral properties and space weathering of planetary bodies. Thus, obtaining coarse‐grained meteoritic troilite in quantities is beneficial for these fields. The previous synthesis of troilite was achieved by pyrite or pyrrhotite heating treatments or chemical syntheses. However, most of these works lacked a visual characterization of the step by step process and the final product, the production of large quantities, and they were not readily advertised to planetary scientists or the meteoritical research community. Here, we illustrate a two‐step heat treatment of pyrite to synthesize troilite. Pyrite powder was decomposed to pyrrhotite at 1023–1073 K for 4–6 h in Ar; the run product was then retrieved and reheated for 1 h at 1498–1598 K in N2 (gas). The minerals were analyzed with a scanning electron microscope, X‐ray diffraction (XRD) at room temperature, and in situ high‐temperature XRD. The primary observation of synthesis from pyrrhotite to troilite is the shift of a major diffraction peak from ~43.2°2θ to ~43.8°2θ. Troilite spectra matched an XRD analysis of natural meteoritic troilite. Slight contamination of Fe was observed during cooling to troilite, and alumina crucibles locally reacted with troilite. The habitus and size of troilite crystals allowed us to store it as large grains rather than powder; 27 g of pyrite yielded 17 g of stochiometric troilite.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.13782</doi><tpages>602</tpages><orcidid>https://orcid.org/0000-0002-9037-3243</orcidid><orcidid>https://orcid.org/0000-0003-0069-5589</orcidid><orcidid>https://orcid.org/0000-0001-7473-6043</orcidid><orcidid>https://orcid.org/0000-0002-1434-4934</orcidid><orcidid>https://orcid.org/0000-0001-7241-1050</orcidid><orcidid>https://orcid.org/0000-0002-6027-2089</orcidid><orcidid>https://orcid.org/0000-0002-6803-8350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2022-03, Vol.57 (3), p.588-602
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_journals_2637562125
source Access via Wiley Online Library
subjects Aluminum oxide
Crucibles
Crystals
Decomposition
Heat treatment
Iron
Iron sulfides
Metamorphism
Meteorites
Meteors & meteorites
Pyrite
Pyrrhotite
Room temperature
Shock metamorphism
Stoichiometry
Synthesis
Troilite
Weathering
X-ray diffraction
title Bulk synthesis of stoichiometric/meteoritic troilite (FeS) by high‐temperature pyrite decomposition and pyrrhotite melting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T10%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bulk%20synthesis%20of%20stoichiometric/meteoritic%20troilite%20(FeS)%20by%20high%E2%80%90temperature%20pyrite%20decomposition%20and%20pyrrhotite%20melting&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Moreau,%20Juulia%E2%80%90Gabrielle&rft.date=2022-03&rft.volume=57&rft.issue=3&rft.spage=588&rft.epage=602&rft.pages=588-602&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.13782&rft_dat=%3Cproquest_cross%3E2637562125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637562125&rft_id=info:pmid/&rfr_iscdi=true