Complex burial histories of Apollo 12 basaltic soil grains derived from cosmogenic noble gases: Implications for local regolith evolution and future in situ investigations

We report the concentrations and isotope ratios of light noble gases (He, Ne, Ar) in 10 small basalt fragments derived from lunar regolith soils at the Apollo 12 landing site. We use cosmic ray exposure (CRE) and shielding condition histories to consider their geological context. We have devised a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2022-03, Vol.57 (3), p.603-634
Hauptverfasser: Nottingham, Mark C., Stuart, Finlay M., Chen, Biying, Zurakowska, Marta, Gilmour, Jamie D., Alexander, Louise, Crawford, Ian A., Joy, Katherine H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 3
container_start_page 603
container_title Meteoritics & planetary science
container_volume 57
creator Nottingham, Mark C.
Stuart, Finlay M.
Chen, Biying
Zurakowska, Marta
Gilmour, Jamie D.
Alexander, Louise
Crawford, Ian A.
Joy, Katherine H.
description We report the concentrations and isotope ratios of light noble gases (He, Ne, Ar) in 10 small basalt fragments derived from lunar regolith soils at the Apollo 12 landing site. We use cosmic ray exposure (CRE) and shielding condition histories to consider their geological context. We have devised a method of using cosmogenic Ne isotopes to partition the CRE history of each sample into two stages: a duration of “deep” burial (shielding of 5–500 g cm−2) and a duration of near‐surface exposure (shielding of 0 g cm−2). Three samples show evidence of measurable exposure at the lunar surface (durations of between 6 ± 2 and 7 ± 2 Myr). The remaining seven samples show evidence of a surface residence duration of less than a few hundred thousand years prior to collection. One sample records a single‐stage CRE age range of between 516 ± 36 and 1139 ± 121 Myr, within 0–5 g cm−2 of the lunar surface. This is consistent with derivation from ballistic sedimentation (i.e., local regolith reworking) during the Copernicus crater formation impact at ~800 Myr. The remaining samples show CRE age clusters around 124 ± 11 Myr and 188 ± 15 Myr. We infer that local impacts, including Surveyor crater (180–240 Ma) and Head crater (144 Ma), may have brought these samples to depths where the cosmic ray flux was intense enough to produce measurable cosmogenic Ne isotopes. More recent small impacts that formed unnamed craters may have exhumed these samples from their deep shielding conditions to the surface (i.e., ~0–5 g cm−2) prior to collection from the lunar surface during the Apollo 12 mission.
doi_str_mv 10.1111/maps.13783
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637562106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637562106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3603-4c169b0c27ac1c8fe4e03fa67030a76602055786b132a4f81ca162fc80460b923</originalsourceid><addsrcrecordid>eNp9kc1O3TAQhaMKJH7aDU8wUneVAuM4cRJ2V1flRwK1EnQdOcYORk4m2MkF3qYPwFPwZPgS1sxmRprvnBnpJMkRw2MW66SXYzhmvKz4t2Sf1XmRFgxxJ85YibTmZb2XHITwgMgLxvP95HVN_ej0M7Szt9LBvQ0TeasDkIHVSM4RsAxaGaSbrIJA1kHnpR0C3GlvN_oOjKceFIWeOj1EZqDWaehk0OEULqO9VXKyFBWGPDhS8Y7XHTk73YPekJu3W5BDtJqn2Wuww9v_YKc5DhsdJtst-u_JrpEu6B-f_TD5d_b7dn2RXv05v1yvrlLJBfI0V0zULaqslIqpyuhcIzdSlMhRlkJghkVRVqJlPJO5qZiSTGRGVZgLbOuMHyY_F9_R0-McH2geaPZDPNlkgpeFyBiKSP1aKOUpBK9NM3rbS__SMGy2aTTbNJqPNCLMFvjJOv3yBdlcr_7eLJp3UraQ8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637562106</pqid></control><display><type>article</type><title>Complex burial histories of Apollo 12 basaltic soil grains derived from cosmogenic noble gases: Implications for local regolith evolution and future in situ investigations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nottingham, Mark C. ; Stuart, Finlay M. ; Chen, Biying ; Zurakowska, Marta ; Gilmour, Jamie D. ; Alexander, Louise ; Crawford, Ian A. ; Joy, Katherine H.</creator><creatorcontrib>Nottingham, Mark C. ; Stuart, Finlay M. ; Chen, Biying ; Zurakowska, Marta ; Gilmour, Jamie D. ; Alexander, Louise ; Crawford, Ian A. ; Joy, Katherine H.</creatorcontrib><description>We report the concentrations and isotope ratios of light noble gases (He, Ne, Ar) in 10 small basalt fragments derived from lunar regolith soils at the Apollo 12 landing site. We use cosmic ray exposure (CRE) and shielding condition histories to consider their geological context. We have devised a method of using cosmogenic Ne isotopes to partition the CRE history of each sample into two stages: a duration of “deep” burial (shielding of 5–500 g cm−2) and a duration of near‐surface exposure (shielding of 0 g cm−2). Three samples show evidence of measurable exposure at the lunar surface (durations of between 6 ± 2 and 7 ± 2 Myr). The remaining seven samples show evidence of a surface residence duration of less than a few hundred thousand years prior to collection. One sample records a single‐stage CRE age range of between 516 ± 36 and 1139 ± 121 Myr, within 0–5 g cm−2 of the lunar surface. This is consistent with derivation from ballistic sedimentation (i.e., local regolith reworking) during the Copernicus crater formation impact at ~800 Myr. The remaining samples show CRE age clusters around 124 ± 11 Myr and 188 ± 15 Myr. We infer that local impacts, including Surveyor crater (180–240 Ma) and Head crater (144 Ma), may have brought these samples to depths where the cosmic ray flux was intense enough to produce measurable cosmogenic Ne isotopes. More recent small impacts that formed unnamed craters may have exhumed these samples from their deep shielding conditions to the surface (i.e., ~0–5 g cm−2) prior to collection from the lunar surface during the Apollo 12 mission.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.13783</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Basalt ; Cosmic ray showers ; Cosmic rays ; Exposure ; Gases ; Isotope ratios ; Isotopes ; Lunar craters ; Lunar landing ; Lunar regolith ; Lunar soil ; Lunar surface ; Neon ; Rare gases ; Regolith ; Shielding</subject><ispartof>Meteoritics &amp; planetary science, 2022-03, Vol.57 (3), p.603-634</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of The Meteoritical Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3603-4c169b0c27ac1c8fe4e03fa67030a76602055786b132a4f81ca162fc80460b923</citedby><cites>FETCH-LOGICAL-a3603-4c169b0c27ac1c8fe4e03fa67030a76602055786b132a4f81ca162fc80460b923</cites><orcidid>0000-0002-6395-7868 ; 0000-0003-1990-8636 ; 0000-0002-6793-6722 ; 0000-0001-5661-7403 ; 0000-0003-4992-8750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmaps.13783$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmaps.13783$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Nottingham, Mark C.</creatorcontrib><creatorcontrib>Stuart, Finlay M.</creatorcontrib><creatorcontrib>Chen, Biying</creatorcontrib><creatorcontrib>Zurakowska, Marta</creatorcontrib><creatorcontrib>Gilmour, Jamie D.</creatorcontrib><creatorcontrib>Alexander, Louise</creatorcontrib><creatorcontrib>Crawford, Ian A.</creatorcontrib><creatorcontrib>Joy, Katherine H.</creatorcontrib><title>Complex burial histories of Apollo 12 basaltic soil grains derived from cosmogenic noble gases: Implications for local regolith evolution and future in situ investigations</title><title>Meteoritics &amp; planetary science</title><description>We report the concentrations and isotope ratios of light noble gases (He, Ne, Ar) in 10 small basalt fragments derived from lunar regolith soils at the Apollo 12 landing site. We use cosmic ray exposure (CRE) and shielding condition histories to consider their geological context. We have devised a method of using cosmogenic Ne isotopes to partition the CRE history of each sample into two stages: a duration of “deep” burial (shielding of 5–500 g cm−2) and a duration of near‐surface exposure (shielding of 0 g cm−2). Three samples show evidence of measurable exposure at the lunar surface (durations of between 6 ± 2 and 7 ± 2 Myr). The remaining seven samples show evidence of a surface residence duration of less than a few hundred thousand years prior to collection. One sample records a single‐stage CRE age range of between 516 ± 36 and 1139 ± 121 Myr, within 0–5 g cm−2 of the lunar surface. This is consistent with derivation from ballistic sedimentation (i.e., local regolith reworking) during the Copernicus crater formation impact at ~800 Myr. The remaining samples show CRE age clusters around 124 ± 11 Myr and 188 ± 15 Myr. We infer that local impacts, including Surveyor crater (180–240 Ma) and Head crater (144 Ma), may have brought these samples to depths where the cosmic ray flux was intense enough to produce measurable cosmogenic Ne isotopes. More recent small impacts that formed unnamed craters may have exhumed these samples from their deep shielding conditions to the surface (i.e., ~0–5 g cm−2) prior to collection from the lunar surface during the Apollo 12 mission.</description><subject>Basalt</subject><subject>Cosmic ray showers</subject><subject>Cosmic rays</subject><subject>Exposure</subject><subject>Gases</subject><subject>Isotope ratios</subject><subject>Isotopes</subject><subject>Lunar craters</subject><subject>Lunar landing</subject><subject>Lunar regolith</subject><subject>Lunar soil</subject><subject>Lunar surface</subject><subject>Neon</subject><subject>Rare gases</subject><subject>Regolith</subject><subject>Shielding</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kc1O3TAQhaMKJH7aDU8wUneVAuM4cRJ2V1flRwK1EnQdOcYORk4m2MkF3qYPwFPwZPgS1sxmRprvnBnpJMkRw2MW66SXYzhmvKz4t2Sf1XmRFgxxJ85YibTmZb2XHITwgMgLxvP95HVN_ej0M7Szt9LBvQ0TeasDkIHVSM4RsAxaGaSbrIJA1kHnpR0C3GlvN_oOjKceFIWeOj1EZqDWaehk0OEULqO9VXKyFBWGPDhS8Y7XHTk73YPekJu3W5BDtJqn2Wuww9v_YKc5DhsdJtst-u_JrpEu6B-f_TD5d_b7dn2RXv05v1yvrlLJBfI0V0zULaqslIqpyuhcIzdSlMhRlkJghkVRVqJlPJO5qZiSTGRGVZgLbOuMHyY_F9_R0-McH2geaPZDPNlkgpeFyBiKSP1aKOUpBK9NM3rbS__SMGy2aTTbNJqPNCLMFvjJOv3yBdlcr_7eLJp3UraQ8Q</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Nottingham, Mark C.</creator><creator>Stuart, Finlay M.</creator><creator>Chen, Biying</creator><creator>Zurakowska, Marta</creator><creator>Gilmour, Jamie D.</creator><creator>Alexander, Louise</creator><creator>Crawford, Ian A.</creator><creator>Joy, Katherine H.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6395-7868</orcidid><orcidid>https://orcid.org/0000-0003-1990-8636</orcidid><orcidid>https://orcid.org/0000-0002-6793-6722</orcidid><orcidid>https://orcid.org/0000-0001-5661-7403</orcidid><orcidid>https://orcid.org/0000-0003-4992-8750</orcidid></search><sort><creationdate>202203</creationdate><title>Complex burial histories of Apollo 12 basaltic soil grains derived from cosmogenic noble gases: Implications for local regolith evolution and future in situ investigations</title><author>Nottingham, Mark C. ; Stuart, Finlay M. ; Chen, Biying ; Zurakowska, Marta ; Gilmour, Jamie D. ; Alexander, Louise ; Crawford, Ian A. ; Joy, Katherine H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3603-4c169b0c27ac1c8fe4e03fa67030a76602055786b132a4f81ca162fc80460b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basalt</topic><topic>Cosmic ray showers</topic><topic>Cosmic rays</topic><topic>Exposure</topic><topic>Gases</topic><topic>Isotope ratios</topic><topic>Isotopes</topic><topic>Lunar craters</topic><topic>Lunar landing</topic><topic>Lunar regolith</topic><topic>Lunar soil</topic><topic>Lunar surface</topic><topic>Neon</topic><topic>Rare gases</topic><topic>Regolith</topic><topic>Shielding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nottingham, Mark C.</creatorcontrib><creatorcontrib>Stuart, Finlay M.</creatorcontrib><creatorcontrib>Chen, Biying</creatorcontrib><creatorcontrib>Zurakowska, Marta</creatorcontrib><creatorcontrib>Gilmour, Jamie D.</creatorcontrib><creatorcontrib>Alexander, Louise</creatorcontrib><creatorcontrib>Crawford, Ian A.</creatorcontrib><creatorcontrib>Joy, Katherine H.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nottingham, Mark C.</au><au>Stuart, Finlay M.</au><au>Chen, Biying</au><au>Zurakowska, Marta</au><au>Gilmour, Jamie D.</au><au>Alexander, Louise</au><au>Crawford, Ian A.</au><au>Joy, Katherine H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex burial histories of Apollo 12 basaltic soil grains derived from cosmogenic noble gases: Implications for local regolith evolution and future in situ investigations</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><date>2022-03</date><risdate>2022</risdate><volume>57</volume><issue>3</issue><spage>603</spage><epage>634</epage><pages>603-634</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>We report the concentrations and isotope ratios of light noble gases (He, Ne, Ar) in 10 small basalt fragments derived from lunar regolith soils at the Apollo 12 landing site. We use cosmic ray exposure (CRE) and shielding condition histories to consider their geological context. We have devised a method of using cosmogenic Ne isotopes to partition the CRE history of each sample into two stages: a duration of “deep” burial (shielding of 5–500 g cm−2) and a duration of near‐surface exposure (shielding of 0 g cm−2). Three samples show evidence of measurable exposure at the lunar surface (durations of between 6 ± 2 and 7 ± 2 Myr). The remaining seven samples show evidence of a surface residence duration of less than a few hundred thousand years prior to collection. One sample records a single‐stage CRE age range of between 516 ± 36 and 1139 ± 121 Myr, within 0–5 g cm−2 of the lunar surface. This is consistent with derivation from ballistic sedimentation (i.e., local regolith reworking) during the Copernicus crater formation impact at ~800 Myr. The remaining samples show CRE age clusters around 124 ± 11 Myr and 188 ± 15 Myr. We infer that local impacts, including Surveyor crater (180–240 Ma) and Head crater (144 Ma), may have brought these samples to depths where the cosmic ray flux was intense enough to produce measurable cosmogenic Ne isotopes. More recent small impacts that formed unnamed craters may have exhumed these samples from their deep shielding conditions to the surface (i.e., ~0–5 g cm−2) prior to collection from the lunar surface during the Apollo 12 mission.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.13783</doi><tpages>634</tpages><orcidid>https://orcid.org/0000-0002-6395-7868</orcidid><orcidid>https://orcid.org/0000-0003-1990-8636</orcidid><orcidid>https://orcid.org/0000-0002-6793-6722</orcidid><orcidid>https://orcid.org/0000-0001-5661-7403</orcidid><orcidid>https://orcid.org/0000-0003-4992-8750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2022-03, Vol.57 (3), p.603-634
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_journals_2637562106
source Wiley Online Library Journals Frontfile Complete
subjects Basalt
Cosmic ray showers
Cosmic rays
Exposure
Gases
Isotope ratios
Isotopes
Lunar craters
Lunar landing
Lunar regolith
Lunar soil
Lunar surface
Neon
Rare gases
Regolith
Shielding
title Complex burial histories of Apollo 12 basaltic soil grains derived from cosmogenic noble gases: Implications for local regolith evolution and future in situ investigations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20burial%20histories%20of%20Apollo%2012%20basaltic%20soil%20grains%20derived%20from%20cosmogenic%20noble%20gases:%20Implications%20for%20local%20regolith%20evolution%20and%20future%20in%C2%A0situ%20investigations&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Nottingham,%20Mark%20C.&rft.date=2022-03&rft.volume=57&rft.issue=3&rft.spage=603&rft.epage=634&rft.pages=603-634&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.13783&rft_dat=%3Cproquest_cross%3E2637562106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637562106&rft_id=info:pmid/&rfr_iscdi=true