Seismic behaviour of rubble masonry: Shake table test and numerical modelling

The destruction of Amatrice and the surrounding villages in Central Italy after the 2016 seismic sequence was so impressive that engineers, authorities and local communities started sharing the common feeling that historical stone masonry buildings were too below current safety standards. The severe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthquake engineering & structural dynamics 2022-04, Vol.51 (5), p.1245-1266
Hauptverfasser: Felice, Gianmarco, Liberatore, Domenico, De Santis, Stefano, Gobbin, Francesca, Roselli, Ivan, Sangirardi, Marialuigia, AlShawa, Omar, Sorrentino, Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1266
container_issue 5
container_start_page 1245
container_title Earthquake engineering & structural dynamics
container_volume 51
creator Felice, Gianmarco
Liberatore, Domenico
De Santis, Stefano
Gobbin, Francesca
Roselli, Ivan
Sangirardi, Marialuigia
AlShawa, Omar
Sorrentino, Luigi
description The destruction of Amatrice and the surrounding villages in Central Italy after the 2016 seismic sequence was so impressive that engineers, authorities and local communities started sharing the common feeling that historical stone masonry buildings were too below current safety standards. The severe damage caused by the earthquakes led to a general distrust of traditional building techniques, leading to the conclusion that there is nothing to do but demolish and rebuild, perhaps with a false antique. Is there an alternative? Is there a way to combine safety and preservation of architectural heritage? This paper aims contributing to the understanding of the seismic behaviour of stone masonry by reproducing, through simulation on a shake table, the progressive loss of compactness of a real scale rubble masonry wall up to the ruinous collapse with the separation between the two external leaves. The laboratory simulation allowed to evaluate the decrease of the fundamental frequency with increasing damage and estimate the maximum displacement profile and the amount of cracking that the wall is able to sustain before failing. Eventually, two modelling strategies based on finite and discrete element methods were proposed and applied to verify the capability of simulating the out‐of‐plane seismic response and the failure mechanisms of rubble masonry.
doi_str_mv 10.1002/eqe.3613
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637550132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637550132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3273-e001b5bdc83397a83f280372bc97cb0c2c9d53d3a516c948582335e162d5247c3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnWQ2m6w3KfUDKiLVc0iyWbt1P9qkq_Tfu7VePQ0MDzMvLyGXDCYMgN_4jZ9gxvCIjBjkWZKrVByTEUCuEqVSeUrOYlwBAGYgR-R54avYVI5avzRfVdcH2pU09NbWnjYmdm3Y3dLF0nx6ujX75dbHLTVtQdu-8aFypqZNV_i6rtqPc3JSmjr6i785Ju_3s7fpYzJ_eXia3s0Th1xi4gGYFbZwCjGXRmHJFaDk1uXSWXDc5YXAAo1gmctTJRRHFJ5lvBA8lQ7H5Opwdx26TT8E0qsheTu81DxDKQQw5IO6PigXuhiDL_U6VI0JO81A78vSQ1l6X9ZAkwP9rmq_-9fp2evs1_8As6FpcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637550132</pqid></control><display><type>article</type><title>Seismic behaviour of rubble masonry: Shake table test and numerical modelling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Felice, Gianmarco ; Liberatore, Domenico ; De Santis, Stefano ; Gobbin, Francesca ; Roselli, Ivan ; Sangirardi, Marialuigia ; AlShawa, Omar ; Sorrentino, Luigi</creator><creatorcontrib>Felice, Gianmarco ; Liberatore, Domenico ; De Santis, Stefano ; Gobbin, Francesca ; Roselli, Ivan ; Sangirardi, Marialuigia ; AlShawa, Omar ; Sorrentino, Luigi</creatorcontrib><description>The destruction of Amatrice and the surrounding villages in Central Italy after the 2016 seismic sequence was so impressive that engineers, authorities and local communities started sharing the common feeling that historical stone masonry buildings were too below current safety standards. The severe damage caused by the earthquakes led to a general distrust of traditional building techniques, leading to the conclusion that there is nothing to do but demolish and rebuild, perhaps with a false antique. Is there an alternative? Is there a way to combine safety and preservation of architectural heritage? This paper aims contributing to the understanding of the seismic behaviour of stone masonry by reproducing, through simulation on a shake table, the progressive loss of compactness of a real scale rubble masonry wall up to the ruinous collapse with the separation between the two external leaves. The laboratory simulation allowed to evaluate the decrease of the fundamental frequency with increasing damage and estimate the maximum displacement profile and the amount of cracking that the wall is able to sustain before failing. Eventually, two modelling strategies based on finite and discrete element methods were proposed and applied to verify the capability of simulating the out‐of‐plane seismic response and the failure mechanisms of rubble masonry.</description><identifier>ISSN: 0098-8847</identifier><identifier>EISSN: 1096-9845</identifier><identifier>DOI: 10.1002/eqe.3613</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Cracking (fracturing) ; DEM modelling ; Earthquake damage ; Earthquakes ; experimental test ; Failure mechanisms ; FEM‐DEM modelling ; fragmentation ; Historic buildings &amp; sites ; Historical buildings ; Historical structures ; Local communities ; Masonry ; Modelling ; motion camera tracking ; out‐of‐plane behaviour ; Resonant frequencies ; Safety ; Seismic activity ; Seismic response ; Shake table tests ; Simulation ; Stone</subject><ispartof>Earthquake engineering &amp; structural dynamics, 2022-04, Vol.51 (5), p.1245-1266</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3273-e001b5bdc83397a83f280372bc97cb0c2c9d53d3a516c948582335e162d5247c3</citedby><cites>FETCH-LOGICAL-c3273-e001b5bdc83397a83f280372bc97cb0c2c9d53d3a516c948582335e162d5247c3</cites><orcidid>0000-0002-9920-7380 ; 0000-0003-4984-2156 ; 0000-0003-1652-942X ; 0000-0002-2596-8355 ; 0000-0002-0816-4865 ; 0000-0002-0917-0220 ; 0000-0003-3184-8189 ; 0000-0001-7905-5482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feqe.3613$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feqe.3613$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Felice, Gianmarco</creatorcontrib><creatorcontrib>Liberatore, Domenico</creatorcontrib><creatorcontrib>De Santis, Stefano</creatorcontrib><creatorcontrib>Gobbin, Francesca</creatorcontrib><creatorcontrib>Roselli, Ivan</creatorcontrib><creatorcontrib>Sangirardi, Marialuigia</creatorcontrib><creatorcontrib>AlShawa, Omar</creatorcontrib><creatorcontrib>Sorrentino, Luigi</creatorcontrib><title>Seismic behaviour of rubble masonry: Shake table test and numerical modelling</title><title>Earthquake engineering &amp; structural dynamics</title><description>The destruction of Amatrice and the surrounding villages in Central Italy after the 2016 seismic sequence was so impressive that engineers, authorities and local communities started sharing the common feeling that historical stone masonry buildings were too below current safety standards. The severe damage caused by the earthquakes led to a general distrust of traditional building techniques, leading to the conclusion that there is nothing to do but demolish and rebuild, perhaps with a false antique. Is there an alternative? Is there a way to combine safety and preservation of architectural heritage? This paper aims contributing to the understanding of the seismic behaviour of stone masonry by reproducing, through simulation on a shake table, the progressive loss of compactness of a real scale rubble masonry wall up to the ruinous collapse with the separation between the two external leaves. The laboratory simulation allowed to evaluate the decrease of the fundamental frequency with increasing damage and estimate the maximum displacement profile and the amount of cracking that the wall is able to sustain before failing. Eventually, two modelling strategies based on finite and discrete element methods were proposed and applied to verify the capability of simulating the out‐of‐plane seismic response and the failure mechanisms of rubble masonry.</description><subject>Cracking (fracturing)</subject><subject>DEM modelling</subject><subject>Earthquake damage</subject><subject>Earthquakes</subject><subject>experimental test</subject><subject>Failure mechanisms</subject><subject>FEM‐DEM modelling</subject><subject>fragmentation</subject><subject>Historic buildings &amp; sites</subject><subject>Historical buildings</subject><subject>Historical structures</subject><subject>Local communities</subject><subject>Masonry</subject><subject>Modelling</subject><subject>motion camera tracking</subject><subject>out‐of‐plane behaviour</subject><subject>Resonant frequencies</subject><subject>Safety</subject><subject>Seismic activity</subject><subject>Seismic response</subject><subject>Shake table tests</subject><subject>Simulation</subject><subject>Stone</subject><issn>0098-8847</issn><issn>1096-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnWQ2m6w3KfUDKiLVc0iyWbt1P9qkq_Tfu7VePQ0MDzMvLyGXDCYMgN_4jZ9gxvCIjBjkWZKrVByTEUCuEqVSeUrOYlwBAGYgR-R54avYVI5avzRfVdcH2pU09NbWnjYmdm3Y3dLF0nx6ujX75dbHLTVtQdu-8aFypqZNV_i6rtqPc3JSmjr6i785Ju_3s7fpYzJ_eXia3s0Th1xi4gGYFbZwCjGXRmHJFaDk1uXSWXDc5YXAAo1gmctTJRRHFJ5lvBA8lQ7H5Opwdx26TT8E0qsheTu81DxDKQQw5IO6PigXuhiDL_U6VI0JO81A78vSQ1l6X9ZAkwP9rmq_-9fp2evs1_8As6FpcA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Felice, Gianmarco</creator><creator>Liberatore, Domenico</creator><creator>De Santis, Stefano</creator><creator>Gobbin, Francesca</creator><creator>Roselli, Ivan</creator><creator>Sangirardi, Marialuigia</creator><creator>AlShawa, Omar</creator><creator>Sorrentino, Luigi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9920-7380</orcidid><orcidid>https://orcid.org/0000-0003-4984-2156</orcidid><orcidid>https://orcid.org/0000-0003-1652-942X</orcidid><orcidid>https://orcid.org/0000-0002-2596-8355</orcidid><orcidid>https://orcid.org/0000-0002-0816-4865</orcidid><orcidid>https://orcid.org/0000-0002-0917-0220</orcidid><orcidid>https://orcid.org/0000-0003-3184-8189</orcidid><orcidid>https://orcid.org/0000-0001-7905-5482</orcidid></search><sort><creationdate>20220401</creationdate><title>Seismic behaviour of rubble masonry: Shake table test and numerical modelling</title><author>Felice, Gianmarco ; Liberatore, Domenico ; De Santis, Stefano ; Gobbin, Francesca ; Roselli, Ivan ; Sangirardi, Marialuigia ; AlShawa, Omar ; Sorrentino, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3273-e001b5bdc83397a83f280372bc97cb0c2c9d53d3a516c948582335e162d5247c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cracking (fracturing)</topic><topic>DEM modelling</topic><topic>Earthquake damage</topic><topic>Earthquakes</topic><topic>experimental test</topic><topic>Failure mechanisms</topic><topic>FEM‐DEM modelling</topic><topic>fragmentation</topic><topic>Historic buildings &amp; sites</topic><topic>Historical buildings</topic><topic>Historical structures</topic><topic>Local communities</topic><topic>Masonry</topic><topic>Modelling</topic><topic>motion camera tracking</topic><topic>out‐of‐plane behaviour</topic><topic>Resonant frequencies</topic><topic>Safety</topic><topic>Seismic activity</topic><topic>Seismic response</topic><topic>Shake table tests</topic><topic>Simulation</topic><topic>Stone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felice, Gianmarco</creatorcontrib><creatorcontrib>Liberatore, Domenico</creatorcontrib><creatorcontrib>De Santis, Stefano</creatorcontrib><creatorcontrib>Gobbin, Francesca</creatorcontrib><creatorcontrib>Roselli, Ivan</creatorcontrib><creatorcontrib>Sangirardi, Marialuigia</creatorcontrib><creatorcontrib>AlShawa, Omar</creatorcontrib><creatorcontrib>Sorrentino, Luigi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Earthquake engineering &amp; structural dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felice, Gianmarco</au><au>Liberatore, Domenico</au><au>De Santis, Stefano</au><au>Gobbin, Francesca</au><au>Roselli, Ivan</au><au>Sangirardi, Marialuigia</au><au>AlShawa, Omar</au><au>Sorrentino, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic behaviour of rubble masonry: Shake table test and numerical modelling</atitle><jtitle>Earthquake engineering &amp; structural dynamics</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>51</volume><issue>5</issue><spage>1245</spage><epage>1266</epage><pages>1245-1266</pages><issn>0098-8847</issn><eissn>1096-9845</eissn><abstract>The destruction of Amatrice and the surrounding villages in Central Italy after the 2016 seismic sequence was so impressive that engineers, authorities and local communities started sharing the common feeling that historical stone masonry buildings were too below current safety standards. The severe damage caused by the earthquakes led to a general distrust of traditional building techniques, leading to the conclusion that there is nothing to do but demolish and rebuild, perhaps with a false antique. Is there an alternative? Is there a way to combine safety and preservation of architectural heritage? This paper aims contributing to the understanding of the seismic behaviour of stone masonry by reproducing, through simulation on a shake table, the progressive loss of compactness of a real scale rubble masonry wall up to the ruinous collapse with the separation between the two external leaves. The laboratory simulation allowed to evaluate the decrease of the fundamental frequency with increasing damage and estimate the maximum displacement profile and the amount of cracking that the wall is able to sustain before failing. Eventually, two modelling strategies based on finite and discrete element methods were proposed and applied to verify the capability of simulating the out‐of‐plane seismic response and the failure mechanisms of rubble masonry.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eqe.3613</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9920-7380</orcidid><orcidid>https://orcid.org/0000-0003-4984-2156</orcidid><orcidid>https://orcid.org/0000-0003-1652-942X</orcidid><orcidid>https://orcid.org/0000-0002-2596-8355</orcidid><orcidid>https://orcid.org/0000-0002-0816-4865</orcidid><orcidid>https://orcid.org/0000-0002-0917-0220</orcidid><orcidid>https://orcid.org/0000-0003-3184-8189</orcidid><orcidid>https://orcid.org/0000-0001-7905-5482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-8847
ispartof Earthquake engineering & structural dynamics, 2022-04, Vol.51 (5), p.1245-1266
issn 0098-8847
1096-9845
language eng
recordid cdi_proquest_journals_2637550132
source Wiley Online Library Journals Frontfile Complete
subjects Cracking (fracturing)
DEM modelling
Earthquake damage
Earthquakes
experimental test
Failure mechanisms
FEM‐DEM modelling
fragmentation
Historic buildings & sites
Historical buildings
Historical structures
Local communities
Masonry
Modelling
motion camera tracking
out‐of‐plane behaviour
Resonant frequencies
Safety
Seismic activity
Seismic response
Shake table tests
Simulation
Stone
title Seismic behaviour of rubble masonry: Shake table test and numerical modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20behaviour%20of%20rubble%20masonry:%20Shake%20table%20test%20and%20numerical%20modelling&rft.jtitle=Earthquake%20engineering%20&%20structural%20dynamics&rft.au=Felice,%20Gianmarco&rft.date=2022-04-01&rft.volume=51&rft.issue=5&rft.spage=1245&rft.epage=1266&rft.pages=1245-1266&rft.issn=0098-8847&rft.eissn=1096-9845&rft_id=info:doi/10.1002/eqe.3613&rft_dat=%3Cproquest_cross%3E2637550132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637550132&rft_id=info:pmid/&rfr_iscdi=true