Repressing high‐temperature radiative heat transfer in thermal barrier coatings

Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2022-05, Vol.105 (5), p.3485-3497
Hauptverfasser: Aziz, Hafiz Sartaj, Huang, Muzhang, Li, Zongyuan, Wan, Chunlei, Pan, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3497
container_issue 5
container_start_page 3485
container_title Journal of the American Ceramic Society
container_volume 105
creator Aziz, Hafiz Sartaj
Huang, Muzhang
Li, Zongyuan
Wan, Chunlei
Pan, Wei
description Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a smaller refractive index and controlled particle size. Using the Mie theory, it is theoretically demonstrated that controlling the second component particle size closer/equal to the infrared radiation wavelength region (1–5 μm) could reduce photon diffusion. Ceramic composites comprised of 8 wt.% yttria‐stabilized zirconia (8YSZ, matrix) and corundum (second component) with different particle sizes were prepared. The total and the photon thermal conductivity of the 8YSZ/corundum composites are lower than pure 8YSZ by ∼48.9% and ∼96.4% at 1200°C, respectively. With the addition of corundum into 8YSZ, the thermal radiation transport of 8YSZ is significantly suppressed due to the photon scattering produced by the lower refractive index and proper particle size of the corundum. Besides, the fracture toughness and hardness of composites increased by ∼20% and ∼13%, respectively, compared to the 8YSZ. Composite with the corundum particles size of 1 μm displays the lowest values of total and photon thermal conductivity at high temperature.
doi_str_mv 10.1111/jace.18321
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637508255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637508255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-ef24526999b07b8fd293f27c76fa6434301ee79c04b5430ae9cef2be9dc7f1693</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsbnyDgTpiaZH6zLKX-IYii65BJbzop7cx4kyrd-Qg-o09i6rj2bi7n8p174BByztmEx7laaQMTXqWCH5ARz3OeCMmLQzJijImkrAQ7Jifer6LksspG5OkZegTvXbukjVs2359fATY9oA5bBIp64XRw70Ab0IEG1K23gNS1NDSAG72mtUZ08WS6CLZLf0qOrF57OPvbY_J6PX-Z3SYPjzd3s-lDYlLGeQJWZLkopJQ1K-vKLoRMrShNWVhdZGkWIYBSGpbVeRQapImWGuTClJYXMh2Ti-Fvj93bFnxQq26LbYxUokjLnFUizyN1OVAGO-8RrOrRbTTuFGdqX5naV6Z-K4swH-APt4bdP6S6n87mg-cHheFvpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637508255</pqid></control><display><type>article</type><title>Repressing high‐temperature radiative heat transfer in thermal barrier coatings</title><source>Wiley Online Library (Online service)</source><creator>Aziz, Hafiz Sartaj ; Huang, Muzhang ; Li, Zongyuan ; Wan, Chunlei ; Pan, Wei</creator><creatorcontrib>Aziz, Hafiz Sartaj ; Huang, Muzhang ; Li, Zongyuan ; Wan, Chunlei ; Pan, Wei</creatorcontrib><description>Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a smaller refractive index and controlled particle size. Using the Mie theory, it is theoretically demonstrated that controlling the second component particle size closer/equal to the infrared radiation wavelength region (1–5 μm) could reduce photon diffusion. Ceramic composites comprised of 8 wt.% yttria‐stabilized zirconia (8YSZ, matrix) and corundum (second component) with different particle sizes were prepared. The total and the photon thermal conductivity of the 8YSZ/corundum composites are lower than pure 8YSZ by ∼48.9% and ∼96.4% at 1200°C, respectively. With the addition of corundum into 8YSZ, the thermal radiation transport of 8YSZ is significantly suppressed due to the photon scattering produced by the lower refractive index and proper particle size of the corundum. Besides, the fracture toughness and hardness of composites increased by ∼20% and ∼13%, respectively, compared to the 8YSZ. Composite with the corundum particles size of 1 μm displays the lowest values of total and photon thermal conductivity at high temperature.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18321</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>composite ; Corundum ; Diffusion barriers ; Diffusion coatings ; Fracture toughness ; Gas turbines ; Heat conductivity ; High temperature ; Infrared radiation ; mechanical properties ; Mie scattering ; Particle size ; Particulate composites ; Photon scatter ; Photons ; Radiation ; Radiation transport ; Radiative heat transfer ; Refractivity ; sintering ; Temperature ; Thermal barrier coatings ; Thermal conductivity ; Thermal radiation ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2022-05, Vol.105 (5), p.3485-3497</ispartof><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-ef24526999b07b8fd293f27c76fa6434301ee79c04b5430ae9cef2be9dc7f1693</citedby><cites>FETCH-LOGICAL-c3011-ef24526999b07b8fd293f27c76fa6434301ee79c04b5430ae9cef2be9dc7f1693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18321$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18321$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Huang, Muzhang</creatorcontrib><creatorcontrib>Li, Zongyuan</creatorcontrib><creatorcontrib>Wan, Chunlei</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><title>Repressing high‐temperature radiative heat transfer in thermal barrier coatings</title><title>Journal of the American Ceramic Society</title><description>Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a smaller refractive index and controlled particle size. Using the Mie theory, it is theoretically demonstrated that controlling the second component particle size closer/equal to the infrared radiation wavelength region (1–5 μm) could reduce photon diffusion. Ceramic composites comprised of 8 wt.% yttria‐stabilized zirconia (8YSZ, matrix) and corundum (second component) with different particle sizes were prepared. The total and the photon thermal conductivity of the 8YSZ/corundum composites are lower than pure 8YSZ by ∼48.9% and ∼96.4% at 1200°C, respectively. With the addition of corundum into 8YSZ, the thermal radiation transport of 8YSZ is significantly suppressed due to the photon scattering produced by the lower refractive index and proper particle size of the corundum. Besides, the fracture toughness and hardness of composites increased by ∼20% and ∼13%, respectively, compared to the 8YSZ. Composite with the corundum particles size of 1 μm displays the lowest values of total and photon thermal conductivity at high temperature.</description><subject>composite</subject><subject>Corundum</subject><subject>Diffusion barriers</subject><subject>Diffusion coatings</subject><subject>Fracture toughness</subject><subject>Gas turbines</subject><subject>Heat conductivity</subject><subject>High temperature</subject><subject>Infrared radiation</subject><subject>mechanical properties</subject><subject>Mie scattering</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Photon scatter</subject><subject>Photons</subject><subject>Radiation</subject><subject>Radiation transport</subject><subject>Radiative heat transfer</subject><subject>Refractivity</subject><subject>sintering</subject><subject>Temperature</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thermal radiation</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsbnyDgTpiaZH6zLKX-IYii65BJbzop7cx4kyrd-Qg-o09i6rj2bi7n8p174BByztmEx7laaQMTXqWCH5ARz3OeCMmLQzJijImkrAQ7Jifer6LksspG5OkZegTvXbukjVs2359fATY9oA5bBIp64XRw70Ab0IEG1K23gNS1NDSAG72mtUZ08WS6CLZLf0qOrF57OPvbY_J6PX-Z3SYPjzd3s-lDYlLGeQJWZLkopJQ1K-vKLoRMrShNWVhdZGkWIYBSGpbVeRQapImWGuTClJYXMh2Ti-Fvj93bFnxQq26LbYxUokjLnFUizyN1OVAGO-8RrOrRbTTuFGdqX5naV6Z-K4swH-APt4bdP6S6n87mg-cHheFvpQ</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Aziz, Hafiz Sartaj</creator><creator>Huang, Muzhang</creator><creator>Li, Zongyuan</creator><creator>Wan, Chunlei</creator><creator>Pan, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202205</creationdate><title>Repressing high‐temperature radiative heat transfer in thermal barrier coatings</title><author>Aziz, Hafiz Sartaj ; Huang, Muzhang ; Li, Zongyuan ; Wan, Chunlei ; Pan, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-ef24526999b07b8fd293f27c76fa6434301ee79c04b5430ae9cef2be9dc7f1693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>composite</topic><topic>Corundum</topic><topic>Diffusion barriers</topic><topic>Diffusion coatings</topic><topic>Fracture toughness</topic><topic>Gas turbines</topic><topic>Heat conductivity</topic><topic>High temperature</topic><topic>Infrared radiation</topic><topic>mechanical properties</topic><topic>Mie scattering</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Photon scatter</topic><topic>Photons</topic><topic>Radiation</topic><topic>Radiation transport</topic><topic>Radiative heat transfer</topic><topic>Refractivity</topic><topic>sintering</topic><topic>Temperature</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thermal radiation</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Huang, Muzhang</creatorcontrib><creatorcontrib>Li, Zongyuan</creatorcontrib><creatorcontrib>Wan, Chunlei</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aziz, Hafiz Sartaj</au><au>Huang, Muzhang</au><au>Li, Zongyuan</au><au>Wan, Chunlei</au><au>Pan, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repressing high‐temperature radiative heat transfer in thermal barrier coatings</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-05</date><risdate>2022</risdate><volume>105</volume><issue>5</issue><spage>3485</spage><epage>3497</epage><pages>3485-3497</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a smaller refractive index and controlled particle size. Using the Mie theory, it is theoretically demonstrated that controlling the second component particle size closer/equal to the infrared radiation wavelength region (1–5 μm) could reduce photon diffusion. Ceramic composites comprised of 8 wt.% yttria‐stabilized zirconia (8YSZ, matrix) and corundum (second component) with different particle sizes were prepared. The total and the photon thermal conductivity of the 8YSZ/corundum composites are lower than pure 8YSZ by ∼48.9% and ∼96.4% at 1200°C, respectively. With the addition of corundum into 8YSZ, the thermal radiation transport of 8YSZ is significantly suppressed due to the photon scattering produced by the lower refractive index and proper particle size of the corundum. Besides, the fracture toughness and hardness of composites increased by ∼20% and ∼13%, respectively, compared to the 8YSZ. Composite with the corundum particles size of 1 μm displays the lowest values of total and photon thermal conductivity at high temperature.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18321</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-05, Vol.105 (5), p.3485-3497
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2637508255
source Wiley Online Library (Online service)
subjects composite
Corundum
Diffusion barriers
Diffusion coatings
Fracture toughness
Gas turbines
Heat conductivity
High temperature
Infrared radiation
mechanical properties
Mie scattering
Particle size
Particulate composites
Photon scatter
Photons
Radiation
Radiation transport
Radiative heat transfer
Refractivity
sintering
Temperature
Thermal barrier coatings
Thermal conductivity
Thermal radiation
Yttrium oxide
Zirconium dioxide
title Repressing high‐temperature radiative heat transfer in thermal barrier coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repressing%20high%E2%80%90temperature%20radiative%20heat%20transfer%20in%20thermal%20barrier%20coatings&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Aziz,%20Hafiz%20Sartaj&rft.date=2022-05&rft.volume=105&rft.issue=5&rft.spage=3485&rft.epage=3497&rft.pages=3485-3497&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18321&rft_dat=%3Cproquest_cross%3E2637508255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637508255&rft_id=info:pmid/&rfr_iscdi=true