Repressing high‐temperature radiative heat transfer in thermal barrier coatings
Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a small...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2022-05, Vol.105 (5), p.3485-3497 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3497 |
---|---|
container_issue | 5 |
container_start_page | 3485 |
container_title | Journal of the American Ceramic Society |
container_volume | 105 |
creator | Aziz, Hafiz Sartaj Huang, Muzhang Li, Zongyuan Wan, Chunlei Pan, Wei |
description | Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a smaller refractive index and controlled particle size. Using the Mie theory, it is theoretically demonstrated that controlling the second component particle size closer/equal to the infrared radiation wavelength region (1–5 μm) could reduce photon diffusion. Ceramic composites comprised of 8 wt.% yttria‐stabilized zirconia (8YSZ, matrix) and corundum (second component) with different particle sizes were prepared. The total and the photon thermal conductivity of the 8YSZ/corundum composites are lower than pure 8YSZ by ∼48.9% and ∼96.4% at 1200°C, respectively. With the addition of corundum into 8YSZ, the thermal radiation transport of 8YSZ is significantly suppressed due to the photon scattering produced by the lower refractive index and proper particle size of the corundum. Besides, the fracture toughness and hardness of composites increased by ∼20% and ∼13%, respectively, compared to the 8YSZ. Composite with the corundum particles size of 1 μm displays the lowest values of total and photon thermal conductivity at high temperature. |
doi_str_mv | 10.1111/jace.18321 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637508255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637508255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-ef24526999b07b8fd293f27c76fa6434301ee79c04b5430ae9cef2be9dc7f1693</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsbnyDgTpiaZH6zLKX-IYii65BJbzop7cx4kyrd-Qg-o09i6rj2bi7n8p174BByztmEx7laaQMTXqWCH5ARz3OeCMmLQzJijImkrAQ7Jifer6LksspG5OkZegTvXbukjVs2359fATY9oA5bBIp64XRw70Ab0IEG1K23gNS1NDSAG72mtUZ08WS6CLZLf0qOrF57OPvbY_J6PX-Z3SYPjzd3s-lDYlLGeQJWZLkopJQ1K-vKLoRMrShNWVhdZGkWIYBSGpbVeRQapImWGuTClJYXMh2Ti-Fvj93bFnxQq26LbYxUokjLnFUizyN1OVAGO-8RrOrRbTTuFGdqX5naV6Z-K4swH-APt4bdP6S6n87mg-cHheFvpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637508255</pqid></control><display><type>article</type><title>Repressing high‐temperature radiative heat transfer in thermal barrier coatings</title><source>Wiley Online Library (Online service)</source><creator>Aziz, Hafiz Sartaj ; Huang, Muzhang ; Li, Zongyuan ; Wan, Chunlei ; Pan, Wei</creator><creatorcontrib>Aziz, Hafiz Sartaj ; Huang, Muzhang ; Li, Zongyuan ; Wan, Chunlei ; Pan, Wei</creatorcontrib><description>Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a smaller refractive index and controlled particle size. Using the Mie theory, it is theoretically demonstrated that controlling the second component particle size closer/equal to the infrared radiation wavelength region (1–5 μm) could reduce photon diffusion. Ceramic composites comprised of 8 wt.% yttria‐stabilized zirconia (8YSZ, matrix) and corundum (second component) with different particle sizes were prepared. The total and the photon thermal conductivity of the 8YSZ/corundum composites are lower than pure 8YSZ by ∼48.9% and ∼96.4% at 1200°C, respectively. With the addition of corundum into 8YSZ, the thermal radiation transport of 8YSZ is significantly suppressed due to the photon scattering produced by the lower refractive index and proper particle size of the corundum. Besides, the fracture toughness and hardness of composites increased by ∼20% and ∼13%, respectively, compared to the 8YSZ. Composite with the corundum particles size of 1 μm displays the lowest values of total and photon thermal conductivity at high temperature.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18321</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>composite ; Corundum ; Diffusion barriers ; Diffusion coatings ; Fracture toughness ; Gas turbines ; Heat conductivity ; High temperature ; Infrared radiation ; mechanical properties ; Mie scattering ; Particle size ; Particulate composites ; Photon scatter ; Photons ; Radiation ; Radiation transport ; Radiative heat transfer ; Refractivity ; sintering ; Temperature ; Thermal barrier coatings ; Thermal conductivity ; Thermal radiation ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2022-05, Vol.105 (5), p.3485-3497</ispartof><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-ef24526999b07b8fd293f27c76fa6434301ee79c04b5430ae9cef2be9dc7f1693</citedby><cites>FETCH-LOGICAL-c3011-ef24526999b07b8fd293f27c76fa6434301ee79c04b5430ae9cef2be9dc7f1693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18321$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18321$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Huang, Muzhang</creatorcontrib><creatorcontrib>Li, Zongyuan</creatorcontrib><creatorcontrib>Wan, Chunlei</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><title>Repressing high‐temperature radiative heat transfer in thermal barrier coatings</title><title>Journal of the American Ceramic Society</title><description>Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a smaller refractive index and controlled particle size. Using the Mie theory, it is theoretically demonstrated that controlling the second component particle size closer/equal to the infrared radiation wavelength region (1–5 μm) could reduce photon diffusion. Ceramic composites comprised of 8 wt.% yttria‐stabilized zirconia (8YSZ, matrix) and corundum (second component) with different particle sizes were prepared. The total and the photon thermal conductivity of the 8YSZ/corundum composites are lower than pure 8YSZ by ∼48.9% and ∼96.4% at 1200°C, respectively. With the addition of corundum into 8YSZ, the thermal radiation transport of 8YSZ is significantly suppressed due to the photon scattering produced by the lower refractive index and proper particle size of the corundum. Besides, the fracture toughness and hardness of composites increased by ∼20% and ∼13%, respectively, compared to the 8YSZ. Composite with the corundum particles size of 1 μm displays the lowest values of total and photon thermal conductivity at high temperature.</description><subject>composite</subject><subject>Corundum</subject><subject>Diffusion barriers</subject><subject>Diffusion coatings</subject><subject>Fracture toughness</subject><subject>Gas turbines</subject><subject>Heat conductivity</subject><subject>High temperature</subject><subject>Infrared radiation</subject><subject>mechanical properties</subject><subject>Mie scattering</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Photon scatter</subject><subject>Photons</subject><subject>Radiation</subject><subject>Radiation transport</subject><subject>Radiative heat transfer</subject><subject>Refractivity</subject><subject>sintering</subject><subject>Temperature</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thermal radiation</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsbnyDgTpiaZH6zLKX-IYii65BJbzop7cx4kyrd-Qg-o09i6rj2bi7n8p174BByztmEx7laaQMTXqWCH5ARz3OeCMmLQzJijImkrAQ7Jifer6LksspG5OkZegTvXbukjVs2359fATY9oA5bBIp64XRw70Ab0IEG1K23gNS1NDSAG72mtUZ08WS6CLZLf0qOrF57OPvbY_J6PX-Z3SYPjzd3s-lDYlLGeQJWZLkopJQ1K-vKLoRMrShNWVhdZGkWIYBSGpbVeRQapImWGuTClJYXMh2Ti-Fvj93bFnxQq26LbYxUokjLnFUizyN1OVAGO-8RrOrRbTTuFGdqX5naV6Z-K4swH-APt4bdP6S6n87mg-cHheFvpQ</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Aziz, Hafiz Sartaj</creator><creator>Huang, Muzhang</creator><creator>Li, Zongyuan</creator><creator>Wan, Chunlei</creator><creator>Pan, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202205</creationdate><title>Repressing high‐temperature radiative heat transfer in thermal barrier coatings</title><author>Aziz, Hafiz Sartaj ; Huang, Muzhang ; Li, Zongyuan ; Wan, Chunlei ; Pan, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-ef24526999b07b8fd293f27c76fa6434301ee79c04b5430ae9cef2be9dc7f1693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>composite</topic><topic>Corundum</topic><topic>Diffusion barriers</topic><topic>Diffusion coatings</topic><topic>Fracture toughness</topic><topic>Gas turbines</topic><topic>Heat conductivity</topic><topic>High temperature</topic><topic>Infrared radiation</topic><topic>mechanical properties</topic><topic>Mie scattering</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Photon scatter</topic><topic>Photons</topic><topic>Radiation</topic><topic>Radiation transport</topic><topic>Radiative heat transfer</topic><topic>Refractivity</topic><topic>sintering</topic><topic>Temperature</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thermal radiation</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aziz, Hafiz Sartaj</creatorcontrib><creatorcontrib>Huang, Muzhang</creatorcontrib><creatorcontrib>Li, Zongyuan</creatorcontrib><creatorcontrib>Wan, Chunlei</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aziz, Hafiz Sartaj</au><au>Huang, Muzhang</au><au>Li, Zongyuan</au><au>Wan, Chunlei</au><au>Pan, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repressing high‐temperature radiative heat transfer in thermal barrier coatings</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-05</date><risdate>2022</risdate><volume>105</volume><issue>5</issue><spage>3485</spage><epage>3497</epage><pages>3485-3497</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Photon diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a smaller refractive index and controlled particle size. Using the Mie theory, it is theoretically demonstrated that controlling the second component particle size closer/equal to the infrared radiation wavelength region (1–5 μm) could reduce photon diffusion. Ceramic composites comprised of 8 wt.% yttria‐stabilized zirconia (8YSZ, matrix) and corundum (second component) with different particle sizes were prepared. The total and the photon thermal conductivity of the 8YSZ/corundum composites are lower than pure 8YSZ by ∼48.9% and ∼96.4% at 1200°C, respectively. With the addition of corundum into 8YSZ, the thermal radiation transport of 8YSZ is significantly suppressed due to the photon scattering produced by the lower refractive index and proper particle size of the corundum. Besides, the fracture toughness and hardness of composites increased by ∼20% and ∼13%, respectively, compared to the 8YSZ. Composite with the corundum particles size of 1 μm displays the lowest values of total and photon thermal conductivity at high temperature.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18321</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2022-05, Vol.105 (5), p.3485-3497 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2637508255 |
source | Wiley Online Library (Online service) |
subjects | composite Corundum Diffusion barriers Diffusion coatings Fracture toughness Gas turbines Heat conductivity High temperature Infrared radiation mechanical properties Mie scattering Particle size Particulate composites Photon scatter Photons Radiation Radiation transport Radiative heat transfer Refractivity sintering Temperature Thermal barrier coatings Thermal conductivity Thermal radiation Yttrium oxide Zirconium dioxide |
title | Repressing high‐temperature radiative heat transfer in thermal barrier coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repressing%20high%E2%80%90temperature%20radiative%20heat%20transfer%20in%20thermal%20barrier%20coatings&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Aziz,%20Hafiz%20Sartaj&rft.date=2022-05&rft.volume=105&rft.issue=5&rft.spage=3485&rft.epage=3497&rft.pages=3485-3497&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18321&rft_dat=%3Cproquest_cross%3E2637508255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637508255&rft_id=info:pmid/&rfr_iscdi=true |