Crystalline‐Amorphous Ni2P4O12/NiMoOx Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction

Water electrolysis affords a promising approach to large‐scale hydrogen yield, but its efficiency is restrained by the sluggish water dissociation kinetics. Here, an efficient bifunctional electrocatalyst of in situ formed crystalline nickel metaphosphate on amorphous NiMoOx nanoarrays supported on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-03, Vol.18 (10), p.n/a
Hauptverfasser: Wang, Jing, Hu, Jing, Niu, Siqi, Li, Siwei, Du, Yunchen, Xu, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Wang, Jing
Hu, Jing
Niu, Siqi
Li, Siwei
Du, Yunchen
Xu, Ping
description Water electrolysis affords a promising approach to large‐scale hydrogen yield, but its efficiency is restrained by the sluggish water dissociation kinetics. Here, an efficient bifunctional electrocatalyst of in situ formed crystalline nickel metaphosphate on amorphous NiMoOx nanoarrays supported on nickel foam (c‐Ni2P4O12/a‐NiMoOx/NF) for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution is reported. The c‐Ni2P4O12/a‐NiMoOx/NF can deliver a current density of 10 mA cm–2 at a low potential of 78 mV for HER, and a current density of 20 mA cm–2 at an overpotential of 250 mV for OER. Moreover, it only requires a small cell voltage of 1.55 V at 10 mA cm–2 for robust water splitting with outstanding long‐term durability over 84 h. Various spectroscopic studies reveal that in situ surface reconstruction is crucial for the enhanced catalytic activity, where c‐Ni2P4O12/a‐NiMoOx is transformed into c‐Ni2P4O12/a‐NiMoO4 during the HER process, and into c‐Ni2P4O12/a‐NiOOH in the OER process. This work may provide a new strategy for uncovering the catalytic mechanism of crystalline‐amorphous catalysts. The crystalline‐amorphous Ni2P4O12/NiMoOx nanoarrays, undergo in situ surface reconstruction during the hydrogen evolution reaction and oxygen evolution reaction processes, are highly efficient for alkaline water electrolysis.
doi_str_mv 10.1002/smll.202105972
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2637507700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637507700</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2332-9538d0bf3f564224a9a4a217f05275688cc5641c8b7ddbf44608bf0ab47153633</originalsourceid><addsrcrecordid>eNo9kN1OwjAUxxujiYjeet3Ea6Af27p5txBUkgFGNF4uXdeFYlmx7dDd-QjGR_RJHMFwdc7J-X8kPwCuMRpihMjIbbQeEkQwChNGTkAPR5gOopgkp8cdo3Nw4dwaIYpJwHrgZ2xb57nWqpa_X9_pxtjtyjQOzhV5DBaYjOZqZhafcM5rw63lrYOVsTDVb3zvga_cSwsnWgpvjW6dcrdwUq94LWQJx7yLbr0SMBVe7ZRv4U5xOK3hUvkGLhtbcSHhkxSmdt42ncjUl-Cs4trJq__ZBy93k-fxwyBb3E_HaTbYEkrJIAlpXKKiolUYBYQEPOEBJ5hVKCQsjOJYiO6BRVywsiyqIIhQXFSIFwHDIY0o7YObQ-7WmvdGOp-vTWPrrjInEWUhYqzD1AfJQfWhtGzzrVUbbtsco3wPPd9Dz4_Q8-Usy44X_QOYnnpt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637507700</pqid></control><display><type>article</type><title>Crystalline‐Amorphous Ni2P4O12/NiMoOx Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Jing ; Hu, Jing ; Niu, Siqi ; Li, Siwei ; Du, Yunchen ; Xu, Ping</creator><creatorcontrib>Wang, Jing ; Hu, Jing ; Niu, Siqi ; Li, Siwei ; Du, Yunchen ; Xu, Ping</creatorcontrib><description>Water electrolysis affords a promising approach to large‐scale hydrogen yield, but its efficiency is restrained by the sluggish water dissociation kinetics. Here, an efficient bifunctional electrocatalyst of in situ formed crystalline nickel metaphosphate on amorphous NiMoOx nanoarrays supported on nickel foam (c‐Ni2P4O12/a‐NiMoOx/NF) for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution is reported. The c‐Ni2P4O12/a‐NiMoOx/NF can deliver a current density of 10 mA cm–2 at a low potential of 78 mV for HER, and a current density of 20 mA cm–2 at an overpotential of 250 mV for OER. Moreover, it only requires a small cell voltage of 1.55 V at 10 mA cm–2 for robust water splitting with outstanding long‐term durability over 84 h. Various spectroscopic studies reveal that in situ surface reconstruction is crucial for the enhanced catalytic activity, where c‐Ni2P4O12/a‐NiMoOx is transformed into c‐Ni2P4O12/a‐NiMoO4 during the HER process, and into c‐Ni2P4O12/a‐NiOOH in the OER process. This work may provide a new strategy for uncovering the catalytic mechanism of crystalline‐amorphous catalysts. The crystalline‐amorphous Ni2P4O12/NiMoOx nanoarrays, undergo in situ surface reconstruction during the hydrogen evolution reaction and oxygen evolution reaction processes, are highly efficient for alkaline water electrolysis.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202105972</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalytic activity ; Crystal structure ; crystalline‐amorphous catalysts ; Crystallinity ; Current density ; electrocatalysis ; Electrocatalysts ; Electrolysis ; Hydrogen evolution reactions ; Metal foams ; metaphosphate ; Molybdates ; Nanotechnology ; Nickel compounds ; Oxygen evolution reactions ; Reconstruction ; surface reconstruction ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (10), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1516-4986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202105972$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202105972$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Niu, Siqi</creatorcontrib><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Du, Yunchen</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><title>Crystalline‐Amorphous Ni2P4O12/NiMoOx Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Water electrolysis affords a promising approach to large‐scale hydrogen yield, but its efficiency is restrained by the sluggish water dissociation kinetics. Here, an efficient bifunctional electrocatalyst of in situ formed crystalline nickel metaphosphate on amorphous NiMoOx nanoarrays supported on nickel foam (c‐Ni2P4O12/a‐NiMoOx/NF) for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution is reported. The c‐Ni2P4O12/a‐NiMoOx/NF can deliver a current density of 10 mA cm–2 at a low potential of 78 mV for HER, and a current density of 20 mA cm–2 at an overpotential of 250 mV for OER. Moreover, it only requires a small cell voltage of 1.55 V at 10 mA cm–2 for robust water splitting with outstanding long‐term durability over 84 h. Various spectroscopic studies reveal that in situ surface reconstruction is crucial for the enhanced catalytic activity, where c‐Ni2P4O12/a‐NiMoOx is transformed into c‐Ni2P4O12/a‐NiMoO4 during the HER process, and into c‐Ni2P4O12/a‐NiOOH in the OER process. This work may provide a new strategy for uncovering the catalytic mechanism of crystalline‐amorphous catalysts. The crystalline‐amorphous Ni2P4O12/NiMoOx nanoarrays, undergo in situ surface reconstruction during the hydrogen evolution reaction and oxygen evolution reaction processes, are highly efficient for alkaline water electrolysis.</description><subject>Catalytic activity</subject><subject>Crystal structure</subject><subject>crystalline‐amorphous catalysts</subject><subject>Crystallinity</subject><subject>Current density</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Hydrogen evolution reactions</subject><subject>Metal foams</subject><subject>metaphosphate</subject><subject>Molybdates</subject><subject>Nanotechnology</subject><subject>Nickel compounds</subject><subject>Oxygen evolution reactions</subject><subject>Reconstruction</subject><subject>surface reconstruction</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN1OwjAUxxujiYjeet3Ea6Af27p5txBUkgFGNF4uXdeFYlmx7dDd-QjGR_RJHMFwdc7J-X8kPwCuMRpihMjIbbQeEkQwChNGTkAPR5gOopgkp8cdo3Nw4dwaIYpJwHrgZ2xb57nWqpa_X9_pxtjtyjQOzhV5DBaYjOZqZhafcM5rw63lrYOVsTDVb3zvga_cSwsnWgpvjW6dcrdwUq94LWQJx7yLbr0SMBVe7ZRv4U5xOK3hUvkGLhtbcSHhkxSmdt42ncjUl-Cs4trJq__ZBy93k-fxwyBb3E_HaTbYEkrJIAlpXKKiolUYBYQEPOEBJ5hVKCQsjOJYiO6BRVywsiyqIIhQXFSIFwHDIY0o7YObQ-7WmvdGOp-vTWPrrjInEWUhYqzD1AfJQfWhtGzzrVUbbtsco3wPPd9Dz4_Q8-Usy44X_QOYnnpt</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wang, Jing</creator><creator>Hu, Jing</creator><creator>Niu, Siqi</creator><creator>Li, Siwei</creator><creator>Du, Yunchen</creator><creator>Xu, Ping</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1516-4986</orcidid></search><sort><creationdate>20220301</creationdate><title>Crystalline‐Amorphous Ni2P4O12/NiMoOx Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction</title><author>Wang, Jing ; Hu, Jing ; Niu, Siqi ; Li, Siwei ; Du, Yunchen ; Xu, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2332-9538d0bf3f564224a9a4a217f05275688cc5641c8b7ddbf44608bf0ab47153633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalytic activity</topic><topic>Crystal structure</topic><topic>crystalline‐amorphous catalysts</topic><topic>Crystallinity</topic><topic>Current density</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Hydrogen evolution reactions</topic><topic>Metal foams</topic><topic>metaphosphate</topic><topic>Molybdates</topic><topic>Nanotechnology</topic><topic>Nickel compounds</topic><topic>Oxygen evolution reactions</topic><topic>Reconstruction</topic><topic>surface reconstruction</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Niu, Siqi</creatorcontrib><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Du, Yunchen</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing</au><au>Hu, Jing</au><au>Niu, Siqi</au><au>Li, Siwei</au><au>Du, Yunchen</au><au>Xu, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystalline‐Amorphous Ni2P4O12/NiMoOx Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Water electrolysis affords a promising approach to large‐scale hydrogen yield, but its efficiency is restrained by the sluggish water dissociation kinetics. Here, an efficient bifunctional electrocatalyst of in situ formed crystalline nickel metaphosphate on amorphous NiMoOx nanoarrays supported on nickel foam (c‐Ni2P4O12/a‐NiMoOx/NF) for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution is reported. The c‐Ni2P4O12/a‐NiMoOx/NF can deliver a current density of 10 mA cm–2 at a low potential of 78 mV for HER, and a current density of 20 mA cm–2 at an overpotential of 250 mV for OER. Moreover, it only requires a small cell voltage of 1.55 V at 10 mA cm–2 for robust water splitting with outstanding long‐term durability over 84 h. Various spectroscopic studies reveal that in situ surface reconstruction is crucial for the enhanced catalytic activity, where c‐Ni2P4O12/a‐NiMoOx is transformed into c‐Ni2P4O12/a‐NiMoO4 during the HER process, and into c‐Ni2P4O12/a‐NiOOH in the OER process. This work may provide a new strategy for uncovering the catalytic mechanism of crystalline‐amorphous catalysts. The crystalline‐amorphous Ni2P4O12/NiMoOx nanoarrays, undergo in situ surface reconstruction during the hydrogen evolution reaction and oxygen evolution reaction processes, are highly efficient for alkaline water electrolysis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202105972</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1516-4986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (10), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2637507700
source Wiley Online Library Journals Frontfile Complete
subjects Catalytic activity
Crystal structure
crystalline‐amorphous catalysts
Crystallinity
Current density
electrocatalysis
Electrocatalysts
Electrolysis
Hydrogen evolution reactions
Metal foams
metaphosphate
Molybdates
Nanotechnology
Nickel compounds
Oxygen evolution reactions
Reconstruction
surface reconstruction
Water splitting
title Crystalline‐Amorphous Ni2P4O12/NiMoOx Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystalline%E2%80%90Amorphous%20Ni2P4O12/NiMoOx%20Nanoarrays%20for%20Alkaline%20Water%20Electrolysis:%20Enhanced%20Catalytic%20Activity%20via%20In%20Situ%20Surface%20Reconstruction&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wang,%20Jing&rft.date=2022-03-01&rft.volume=18&rft.issue=10&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202105972&rft_dat=%3Cproquest_wiley%3E2637507700%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637507700&rft_id=info:pmid/&rfr_iscdi=true