Improving I/O Complexity of Triangle Enumeration
In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms mus...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2022-04, Vol.34 (4), p.1815-1828 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1828 |
---|---|
container_issue | 4 |
container_start_page | 1815 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 34 |
creator | Cui, Yi Xiao, Di Cline, Daren B. H. Loguinov, Dmitri |
description | In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms must carefully piece together edges from multiple partitions to detect cycles. In recent literature, two competing proposals (i.e., Pagh and PCF) have emerged; however, neither one is universally better than the other. Since little is known about the I/O cost of PCF or how these methods compare to each other, we undertake an investigation into the properties of these algorithms, model their I/O cost, understand their shortcomings, and shed light on the conditions under which each method defeats the other. This insight leads us to develop a novel framework we call Trigon that surpasses the I/O performance of both previous techniques in all graphs and under all RAM conditions. |
doi_str_mv | 10.1109/TKDE.2020.3003259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2637438147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9120364</ieee_id><sourcerecordid>2637438147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-103a3b7c55be59bfd88f4f6edf91b155ce0dad4ecbb4adce2c513f9377c6eb773</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwAIhLJc7t7CRtmiMaAyYm7TLOUZM6U6e1HWmH2NvTahMn-_D99q-PsUeEBBH0bPP5ukg4cEgEgOCpvmITTNM85qjxethBYiyFVLfsrut2AJCrHCcMlvUhtD9Vs42Ws3U0b-vDnn6r_hS1PtqEqmi2e4oWzbGmUPRV29yzG1_sO3q4zCn7elts5h_xav2-nL-sYse16GMEUQirXJpaSrX1ZZ576TMqvUY7FHMEZVFKctbKonTEXYrCa6GUy8gqJabs-Xx3qPd9pK43u_YYmuGl4ZlQUuQoRwrPlAtt1wXy5hCquggng2BGMWYUY0Yx5iJmyDydMxUR_fMaOYhMij-5RF6m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637438147</pqid></control><display><type>article</type><title>Improving I/O Complexity of Triangle Enumeration</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Yi ; Xiao, Di ; Cline, Daren B. H. ; Loguinov, Dmitri</creator><creatorcontrib>Cui, Yi ; Xiao, Di ; Cline, Daren B. H. ; Loguinov, Dmitri</creatorcontrib><description>In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms must carefully piece together edges from multiple partitions to detect cycles. In recent literature, two competing proposals (i.e., Pagh and PCF) have emerged; however, neither one is universally better than the other. Since little is known about the I/O cost of PCF or how these methods compare to each other, we undertake an investigation into the properties of these algorithms, model their I/O cost, understand their shortcomings, and shed light on the conditions under which each method defeats the other. This insight leads us to develop a novel framework we call Trigon that surpasses the I/O performance of both previous techniques in all graphs and under all RAM conditions.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2020.3003259</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Big Data ; Complexity theory ; Enumeration ; External memory ; graph algorithms ; Graphs ; Image color analysis ; Image edge detection ; modeling ; Partitioning algorithms ; Random access memory ; Runtime</subject><ispartof>IEEE transactions on knowledge and data engineering, 2022-04, Vol.34 (4), p.1815-1828</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-103a3b7c55be59bfd88f4f6edf91b155ce0dad4ecbb4adce2c513f9377c6eb773</citedby><cites>FETCH-LOGICAL-c293t-103a3b7c55be59bfd88f4f6edf91b155ce0dad4ecbb4adce2c513f9377c6eb773</cites><orcidid>0000-0003-3876-1000 ; 0000-0003-3791-0465 ; 0000-0002-8612-2863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9120364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9120364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Xiao, Di</creatorcontrib><creatorcontrib>Cline, Daren B. H.</creatorcontrib><creatorcontrib>Loguinov, Dmitri</creatorcontrib><title>Improving I/O Complexity of Triangle Enumeration</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms must carefully piece together edges from multiple partitions to detect cycles. In recent literature, two competing proposals (i.e., Pagh and PCF) have emerged; however, neither one is universally better than the other. Since little is known about the I/O cost of PCF or how these methods compare to each other, we undertake an investigation into the properties of these algorithms, model their I/O cost, understand their shortcomings, and shed light on the conditions under which each method defeats the other. This insight leads us to develop a novel framework we call Trigon that surpasses the I/O performance of both previous techniques in all graphs and under all RAM conditions.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Complexity theory</subject><subject>Enumeration</subject><subject>External memory</subject><subject>graph algorithms</subject><subject>Graphs</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>modeling</subject><subject>Partitioning algorithms</subject><subject>Random access memory</subject><subject>Runtime</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAMhiMEEmPwAIhLJc7t7CRtmiMaAyYm7TLOUZM6U6e1HWmH2NvTahMn-_D99q-PsUeEBBH0bPP5ukg4cEgEgOCpvmITTNM85qjxethBYiyFVLfsrut2AJCrHCcMlvUhtD9Vs42Ws3U0b-vDnn6r_hS1PtqEqmi2e4oWzbGmUPRV29yzG1_sO3q4zCn7elts5h_xav2-nL-sYse16GMEUQirXJpaSrX1ZZ576TMqvUY7FHMEZVFKctbKonTEXYrCa6GUy8gqJabs-Xx3qPd9pK43u_YYmuGl4ZlQUuQoRwrPlAtt1wXy5hCquggng2BGMWYUY0Yx5iJmyDydMxUR_fMaOYhMij-5RF6m</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Cui, Yi</creator><creator>Xiao, Di</creator><creator>Cline, Daren B. H.</creator><creator>Loguinov, Dmitri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3876-1000</orcidid><orcidid>https://orcid.org/0000-0003-3791-0465</orcidid><orcidid>https://orcid.org/0000-0002-8612-2863</orcidid></search><sort><creationdate>20220401</creationdate><title>Improving I/O Complexity of Triangle Enumeration</title><author>Cui, Yi ; Xiao, Di ; Cline, Daren B. H. ; Loguinov, Dmitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-103a3b7c55be59bfd88f4f6edf91b155ce0dad4ecbb4adce2c513f9377c6eb773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Complexity theory</topic><topic>Enumeration</topic><topic>External memory</topic><topic>graph algorithms</topic><topic>Graphs</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>modeling</topic><topic>Partitioning algorithms</topic><topic>Random access memory</topic><topic>Runtime</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Xiao, Di</creatorcontrib><creatorcontrib>Cline, Daren B. H.</creatorcontrib><creatorcontrib>Loguinov, Dmitri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Yi</au><au>Xiao, Di</au><au>Cline, Daren B. H.</au><au>Loguinov, Dmitri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving I/O Complexity of Triangle Enumeration</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>34</volume><issue>4</issue><spage>1815</spage><epage>1828</epage><pages>1815-1828</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms must carefully piece together edges from multiple partitions to detect cycles. In recent literature, two competing proposals (i.e., Pagh and PCF) have emerged; however, neither one is universally better than the other. Since little is known about the I/O cost of PCF or how these methods compare to each other, we undertake an investigation into the properties of these algorithms, model their I/O cost, understand their shortcomings, and shed light on the conditions under which each method defeats the other. This insight leads us to develop a novel framework we call Trigon that surpasses the I/O performance of both previous techniques in all graphs and under all RAM conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2020.3003259</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3876-1000</orcidid><orcidid>https://orcid.org/0000-0003-3791-0465</orcidid><orcidid>https://orcid.org/0000-0002-8612-2863</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2022-04, Vol.34 (4), p.1815-1828 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_2637438147 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Big Data Complexity theory Enumeration External memory graph algorithms Graphs Image color analysis Image edge detection modeling Partitioning algorithms Random access memory Runtime |
title | Improving I/O Complexity of Triangle Enumeration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20I/O%20Complexity%20of%20Triangle%20Enumeration&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Cui,%20Yi&rft.date=2022-04-01&rft.volume=34&rft.issue=4&rft.spage=1815&rft.epage=1828&rft.pages=1815-1828&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2020.3003259&rft_dat=%3Cproquest_RIE%3E2637438147%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637438147&rft_id=info:pmid/&rft_ieee_id=9120364&rfr_iscdi=true |