Improving I/O Complexity of Triangle Enumeration

In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms mus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2022-04, Vol.34 (4), p.1815-1828
Hauptverfasser: Cui, Yi, Xiao, Di, Cline, Daren B. H., Loguinov, Dmitri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1828
container_issue 4
container_start_page 1815
container_title IEEE transactions on knowledge and data engineering
container_volume 34
creator Cui, Yi
Xiao, Di
Cline, Daren B. H.
Loguinov, Dmitri
description In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms must carefully piece together edges from multiple partitions to detect cycles. In recent literature, two competing proposals (i.e., Pagh and PCF) have emerged; however, neither one is universally better than the other. Since little is known about the I/O cost of PCF or how these methods compare to each other, we undertake an investigation into the properties of these algorithms, model their I/O cost, understand their shortcomings, and shed light on the conditions under which each method defeats the other. This insight leads us to develop a novel framework we call Trigon that surpasses the I/O performance of both previous techniques in all graphs and under all RAM conditions.
doi_str_mv 10.1109/TKDE.2020.3003259
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2637438147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9120364</ieee_id><sourcerecordid>2637438147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-103a3b7c55be59bfd88f4f6edf91b155ce0dad4ecbb4adce2c513f9377c6eb773</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwAIhLJc7t7CRtmiMaAyYm7TLOUZM6U6e1HWmH2NvTahMn-_D99q-PsUeEBBH0bPP5ukg4cEgEgOCpvmITTNM85qjxethBYiyFVLfsrut2AJCrHCcMlvUhtD9Vs42Ws3U0b-vDnn6r_hS1PtqEqmi2e4oWzbGmUPRV29yzG1_sO3q4zCn7elts5h_xav2-nL-sYse16GMEUQirXJpaSrX1ZZ576TMqvUY7FHMEZVFKctbKonTEXYrCa6GUy8gqJabs-Xx3qPd9pK43u_YYmuGl4ZlQUuQoRwrPlAtt1wXy5hCquggng2BGMWYUY0Yx5iJmyDydMxUR_fMaOYhMij-5RF6m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637438147</pqid></control><display><type>article</type><title>Improving I/O Complexity of Triangle Enumeration</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Yi ; Xiao, Di ; Cline, Daren B. H. ; Loguinov, Dmitri</creator><creatorcontrib>Cui, Yi ; Xiao, Di ; Cline, Daren B. H. ; Loguinov, Dmitri</creatorcontrib><description>In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms must carefully piece together edges from multiple partitions to detect cycles. In recent literature, two competing proposals (i.e., Pagh and PCF) have emerged; however, neither one is universally better than the other. Since little is known about the I/O cost of PCF or how these methods compare to each other, we undertake an investigation into the properties of these algorithms, model their I/O cost, understand their shortcomings, and shed light on the conditions under which each method defeats the other. This insight leads us to develop a novel framework we call Trigon that surpasses the I/O performance of both previous techniques in all graphs and under all RAM conditions.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2020.3003259</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Big Data ; Complexity theory ; Enumeration ; External memory ; graph algorithms ; Graphs ; Image color analysis ; Image edge detection ; modeling ; Partitioning algorithms ; Random access memory ; Runtime</subject><ispartof>IEEE transactions on knowledge and data engineering, 2022-04, Vol.34 (4), p.1815-1828</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-103a3b7c55be59bfd88f4f6edf91b155ce0dad4ecbb4adce2c513f9377c6eb773</citedby><cites>FETCH-LOGICAL-c293t-103a3b7c55be59bfd88f4f6edf91b155ce0dad4ecbb4adce2c513f9377c6eb773</cites><orcidid>0000-0003-3876-1000 ; 0000-0003-3791-0465 ; 0000-0002-8612-2863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9120364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9120364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Xiao, Di</creatorcontrib><creatorcontrib>Cline, Daren B. H.</creatorcontrib><creatorcontrib>Loguinov, Dmitri</creatorcontrib><title>Improving I/O Complexity of Triangle Enumeration</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms must carefully piece together edges from multiple partitions to detect cycles. In recent literature, two competing proposals (i.e., Pagh and PCF) have emerged; however, neither one is universally better than the other. Since little is known about the I/O cost of PCF or how these methods compare to each other, we undertake an investigation into the properties of these algorithms, model their I/O cost, understand their shortcomings, and shed light on the conditions under which each method defeats the other. This insight leads us to develop a novel framework we call Trigon that surpasses the I/O performance of both previous techniques in all graphs and under all RAM conditions.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Complexity theory</subject><subject>Enumeration</subject><subject>External memory</subject><subject>graph algorithms</subject><subject>Graphs</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>modeling</subject><subject>Partitioning algorithms</subject><subject>Random access memory</subject><subject>Runtime</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAMhiMEEmPwAIhLJc7t7CRtmiMaAyYm7TLOUZM6U6e1HWmH2NvTahMn-_D99q-PsUeEBBH0bPP5ukg4cEgEgOCpvmITTNM85qjxethBYiyFVLfsrut2AJCrHCcMlvUhtD9Vs42Ws3U0b-vDnn6r_hS1PtqEqmi2e4oWzbGmUPRV29yzG1_sO3q4zCn7elts5h_xav2-nL-sYse16GMEUQirXJpaSrX1ZZ576TMqvUY7FHMEZVFKctbKonTEXYrCa6GUy8gqJabs-Xx3qPd9pK43u_YYmuGl4ZlQUuQoRwrPlAtt1wXy5hCquggng2BGMWYUY0Yx5iJmyDydMxUR_fMaOYhMij-5RF6m</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Cui, Yi</creator><creator>Xiao, Di</creator><creator>Cline, Daren B. H.</creator><creator>Loguinov, Dmitri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3876-1000</orcidid><orcidid>https://orcid.org/0000-0003-3791-0465</orcidid><orcidid>https://orcid.org/0000-0002-8612-2863</orcidid></search><sort><creationdate>20220401</creationdate><title>Improving I/O Complexity of Triangle Enumeration</title><author>Cui, Yi ; Xiao, Di ; Cline, Daren B. H. ; Loguinov, Dmitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-103a3b7c55be59bfd88f4f6edf91b155ce0dad4ecbb4adce2c513f9377c6eb773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Complexity theory</topic><topic>Enumeration</topic><topic>External memory</topic><topic>graph algorithms</topic><topic>Graphs</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>modeling</topic><topic>Partitioning algorithms</topic><topic>Random access memory</topic><topic>Runtime</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Xiao, Di</creatorcontrib><creatorcontrib>Cline, Daren B. H.</creatorcontrib><creatorcontrib>Loguinov, Dmitri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Yi</au><au>Xiao, Di</au><au>Cline, Daren B. H.</au><au>Loguinov, Dmitri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving I/O Complexity of Triangle Enumeration</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>34</volume><issue>4</issue><spage>1815</spage><epage>1828</epage><pages>1815-1828</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>In the age of big data, many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the problem. One particular area that frequently deals with graphs larger than RAM is triangle listing , where the algorithms must carefully piece together edges from multiple partitions to detect cycles. In recent literature, two competing proposals (i.e., Pagh and PCF) have emerged; however, neither one is universally better than the other. Since little is known about the I/O cost of PCF or how these methods compare to each other, we undertake an investigation into the properties of these algorithms, model their I/O cost, understand their shortcomings, and shed light on the conditions under which each method defeats the other. This insight leads us to develop a novel framework we call Trigon that surpasses the I/O performance of both previous techniques in all graphs and under all RAM conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2020.3003259</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3876-1000</orcidid><orcidid>https://orcid.org/0000-0003-3791-0465</orcidid><orcidid>https://orcid.org/0000-0002-8612-2863</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2022-04, Vol.34 (4), p.1815-1828
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_2637438147
source IEEE Electronic Library (IEL)
subjects Algorithms
Big Data
Complexity theory
Enumeration
External memory
graph algorithms
Graphs
Image color analysis
Image edge detection
modeling
Partitioning algorithms
Random access memory
Runtime
title Improving I/O Complexity of Triangle Enumeration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20I/O%20Complexity%20of%20Triangle%20Enumeration&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Cui,%20Yi&rft.date=2022-04-01&rft.volume=34&rft.issue=4&rft.spage=1815&rft.epage=1828&rft.pages=1815-1828&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2020.3003259&rft_dat=%3Cproquest_RIE%3E2637438147%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637438147&rft_id=info:pmid/&rft_ieee_id=9120364&rfr_iscdi=true