A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic

Laser-assisted grinding (LAG), as a potential machining method, is expected to achieve high-efficiency machining without any surface damage or sub-surface damage. However, grinding force tends to exert serious impact on the surface damage during LAG process. In this paper, a grinding force predictiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2022-04, Vol.302, p.117492, Article 117492
Hauptverfasser: Ma, Zhelun, Wang, Qinghua, Chen, Hao, Chen, Liaoyuan, Qu, Sheng, Wang, Zixuan, Yu, Tianbiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117492
container_title Journal of materials processing technology
container_volume 302
creator Ma, Zhelun
Wang, Qinghua
Chen, Hao
Chen, Liaoyuan
Qu, Sheng
Wang, Zixuan
Yu, Tianbiao
description Laser-assisted grinding (LAG), as a potential machining method, is expected to achieve high-efficiency machining without any surface damage or sub-surface damage. However, grinding force tends to exert serious impact on the surface damage during LAG process. In this paper, a grinding force predictive model for the LAG process was established, which has taken the combined effects of temperature-dependent mechanical properties of the material, statuses of grit-material micro interaction, and stochastic shapes and random distributions of abrasive grits into consideration. This model also reveals the mechanism for the reduction of grinding force during LAG. In the meantime, the simulative grinding force distributions of workpiece surface with different laser powers were obtained. LAG experiments of zirconia ceramic were carried out to validate this model. It is found that the modelled forces are in good agreement with the measured forces and the error rates can be confined within 12 %. In addition, the effect of grinding parameters on grinding force has been investigated. It is demonstrated that the grinding force can be reduced by a certain percentage ranging from 29.4%–60.1% using the optimal machining parameters. Within a certain threshold, higher laser power can improve the surface integrity and decrease the depth of damage. This work is expected to provide significant guidance for promoting the development of the laser-assisted machining technologies.
doi_str_mv 10.1016/j.jmatprotec.2022.117492
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637406480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013622000048</els_id><sourcerecordid>2637406480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-a0b2201e9ab2fd6c74a0fd288d810e5a46761a850c040719697e1772a8da552c3</originalsourceid><addsrcrecordid>eNqFkMFOGzEQhq2qSE2h72CJCxw2jL2O7T2mqKRIkXppz9Zgz1KvNuvUNhHlwquzUSpx7Gku___NzMcYF7AUIPTNsBx2WPc5VfJLCVIuhTCqkx_YQljTNsoY9ZEtoJOqAdHqT-xzKQOAMGDtgr2u-WOOU4jTI-9T9sT3mUL0NR6I71KgkeMUOD3vKccdTRVHfsAxBqwxTccKr7-Jj1goN1hKLJXCO_Jqu95cz8jkqRSeev4Ss09TRO4p4y76C3bW41joy795zn7dfft5-73Z_tjc3663jW-Vrg3Cg5QgqMMH2QftjULog7Q2WAG0QqWNFmhX4EGBEZ3uDAljJNqAq5X07Tm7PHHnW_48UaluSE95mlc6qVujQCsLc8qeUj6nUjL1bj9_jfmvE-COut3g3nW7o2530j1Xv56qNH9xiJRd8ZEmP8vM5KsLKf4f8gbDRI80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637406480</pqid></control><display><type>article</type><title>A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic</title><source>Elsevier ScienceDirect Journals</source><creator>Ma, Zhelun ; Wang, Qinghua ; Chen, Hao ; Chen, Liaoyuan ; Qu, Sheng ; Wang, Zixuan ; Yu, Tianbiao</creator><creatorcontrib>Ma, Zhelun ; Wang, Qinghua ; Chen, Hao ; Chen, Liaoyuan ; Qu, Sheng ; Wang, Zixuan ; Yu, Tianbiao</creatorcontrib><description>Laser-assisted grinding (LAG), as a potential machining method, is expected to achieve high-efficiency machining without any surface damage or sub-surface damage. However, grinding force tends to exert serious impact on the surface damage during LAG process. In this paper, a grinding force predictive model for the LAG process was established, which has taken the combined effects of temperature-dependent mechanical properties of the material, statuses of grit-material micro interaction, and stochastic shapes and random distributions of abrasive grits into consideration. This model also reveals the mechanism for the reduction of grinding force during LAG. In the meantime, the simulative grinding force distributions of workpiece surface with different laser powers were obtained. LAG experiments of zirconia ceramic were carried out to validate this model. It is found that the modelled forces are in good agreement with the measured forces and the error rates can be confined within 12 %. In addition, the effect of grinding parameters on grinding force has been investigated. It is demonstrated that the grinding force can be reduced by a certain percentage ranging from 29.4%–60.1% using the optimal machining parameters. Within a certain threshold, higher laser power can improve the surface integrity and decrease the depth of damage. This work is expected to provide significant guidance for promoting the development of the laser-assisted machining technologies.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2022.117492</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Error analysis ; Grinding ; Grinding force model ; Impact damage ; Laser-assisted grinding (LAG) ; Lasers ; Machining ; Machining parameters ; Mathematical models ; Mechanical properties ; Prediction models ; Process parameters ; Temperature dependence ; Temperature effects ; Workpieces ; Zirconia ceramic ; Zirconium dioxide</subject><ispartof>Journal of materials processing technology, 2022-04, Vol.302, p.117492, Article 117492</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-a0b2201e9ab2fd6c74a0fd288d810e5a46761a850c040719697e1772a8da552c3</citedby><cites>FETCH-LOGICAL-c346t-a0b2201e9ab2fd6c74a0fd288d810e5a46761a850c040719697e1772a8da552c3</cites><orcidid>0000-0001-9860-8425 ; 0000-0002-8210-8220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924013622000048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Ma, Zhelun</creatorcontrib><creatorcontrib>Wang, Qinghua</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Chen, Liaoyuan</creatorcontrib><creatorcontrib>Qu, Sheng</creatorcontrib><creatorcontrib>Wang, Zixuan</creatorcontrib><creatorcontrib>Yu, Tianbiao</creatorcontrib><title>A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic</title><title>Journal of materials processing technology</title><description>Laser-assisted grinding (LAG), as a potential machining method, is expected to achieve high-efficiency machining without any surface damage or sub-surface damage. However, grinding force tends to exert serious impact on the surface damage during LAG process. In this paper, a grinding force predictive model for the LAG process was established, which has taken the combined effects of temperature-dependent mechanical properties of the material, statuses of grit-material micro interaction, and stochastic shapes and random distributions of abrasive grits into consideration. This model also reveals the mechanism for the reduction of grinding force during LAG. In the meantime, the simulative grinding force distributions of workpiece surface with different laser powers were obtained. LAG experiments of zirconia ceramic were carried out to validate this model. It is found that the modelled forces are in good agreement with the measured forces and the error rates can be confined within 12 %. In addition, the effect of grinding parameters on grinding force has been investigated. It is demonstrated that the grinding force can be reduced by a certain percentage ranging from 29.4%–60.1% using the optimal machining parameters. Within a certain threshold, higher laser power can improve the surface integrity and decrease the depth of damage. This work is expected to provide significant guidance for promoting the development of the laser-assisted machining technologies.</description><subject>Error analysis</subject><subject>Grinding</subject><subject>Grinding force model</subject><subject>Impact damage</subject><subject>Laser-assisted grinding (LAG)</subject><subject>Lasers</subject><subject>Machining</subject><subject>Machining parameters</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Prediction models</subject><subject>Process parameters</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Workpieces</subject><subject>Zirconia ceramic</subject><subject>Zirconium dioxide</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOGzEQhq2qSE2h72CJCxw2jL2O7T2mqKRIkXppz9Zgz1KvNuvUNhHlwquzUSpx7Gku___NzMcYF7AUIPTNsBx2WPc5VfJLCVIuhTCqkx_YQljTNsoY9ZEtoJOqAdHqT-xzKQOAMGDtgr2u-WOOU4jTI-9T9sT3mUL0NR6I71KgkeMUOD3vKccdTRVHfsAxBqwxTccKr7-Jj1goN1hKLJXCO_Jqu95cz8jkqRSeev4Ss09TRO4p4y76C3bW41joy795zn7dfft5-73Z_tjc3663jW-Vrg3Cg5QgqMMH2QftjULog7Q2WAG0QqWNFmhX4EGBEZ3uDAljJNqAq5X07Tm7PHHnW_48UaluSE95mlc6qVujQCsLc8qeUj6nUjL1bj9_jfmvE-COut3g3nW7o2530j1Xv56qNH9xiJRd8ZEmP8vM5KsLKf4f8gbDRI80</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Ma, Zhelun</creator><creator>Wang, Qinghua</creator><creator>Chen, Hao</creator><creator>Chen, Liaoyuan</creator><creator>Qu, Sheng</creator><creator>Wang, Zixuan</creator><creator>Yu, Tianbiao</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9860-8425</orcidid><orcidid>https://orcid.org/0000-0002-8210-8220</orcidid></search><sort><creationdate>202204</creationdate><title>A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic</title><author>Ma, Zhelun ; Wang, Qinghua ; Chen, Hao ; Chen, Liaoyuan ; Qu, Sheng ; Wang, Zixuan ; Yu, Tianbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-a0b2201e9ab2fd6c74a0fd288d810e5a46761a850c040719697e1772a8da552c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Error analysis</topic><topic>Grinding</topic><topic>Grinding force model</topic><topic>Impact damage</topic><topic>Laser-assisted grinding (LAG)</topic><topic>Lasers</topic><topic>Machining</topic><topic>Machining parameters</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Prediction models</topic><topic>Process parameters</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Workpieces</topic><topic>Zirconia ceramic</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhelun</creatorcontrib><creatorcontrib>Wang, Qinghua</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Chen, Liaoyuan</creatorcontrib><creatorcontrib>Qu, Sheng</creatorcontrib><creatorcontrib>Wang, Zixuan</creatorcontrib><creatorcontrib>Yu, Tianbiao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhelun</au><au>Wang, Qinghua</au><au>Chen, Hao</au><au>Chen, Liaoyuan</au><au>Qu, Sheng</au><au>Wang, Zixuan</au><au>Yu, Tianbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic</atitle><jtitle>Journal of materials processing technology</jtitle><date>2022-04</date><risdate>2022</risdate><volume>302</volume><spage>117492</spage><pages>117492-</pages><artnum>117492</artnum><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>Laser-assisted grinding (LAG), as a potential machining method, is expected to achieve high-efficiency machining without any surface damage or sub-surface damage. However, grinding force tends to exert serious impact on the surface damage during LAG process. In this paper, a grinding force predictive model for the LAG process was established, which has taken the combined effects of temperature-dependent mechanical properties of the material, statuses of grit-material micro interaction, and stochastic shapes and random distributions of abrasive grits into consideration. This model also reveals the mechanism for the reduction of grinding force during LAG. In the meantime, the simulative grinding force distributions of workpiece surface with different laser powers were obtained. LAG experiments of zirconia ceramic were carried out to validate this model. It is found that the modelled forces are in good agreement with the measured forces and the error rates can be confined within 12 %. In addition, the effect of grinding parameters on grinding force has been investigated. It is demonstrated that the grinding force can be reduced by a certain percentage ranging from 29.4%–60.1% using the optimal machining parameters. Within a certain threshold, higher laser power can improve the surface integrity and decrease the depth of damage. This work is expected to provide significant guidance for promoting the development of the laser-assisted machining technologies.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2022.117492</doi><orcidid>https://orcid.org/0000-0001-9860-8425</orcidid><orcidid>https://orcid.org/0000-0002-8210-8220</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2022-04, Vol.302, p.117492, Article 117492
issn 0924-0136
1873-4774
language eng
recordid cdi_proquest_journals_2637406480
source Elsevier ScienceDirect Journals
subjects Error analysis
Grinding
Grinding force model
Impact damage
Laser-assisted grinding (LAG)
Lasers
Machining
Machining parameters
Mathematical models
Mechanical properties
Prediction models
Process parameters
Temperature dependence
Temperature effects
Workpieces
Zirconia ceramic
Zirconium dioxide
title A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20grinding%20force%20predictive%20model%20and%20experimental%20validation%20for%20the%20laser-assisted%20grinding%20(LAG)%20process%20of%20zirconia%20ceramic&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Ma,%20Zhelun&rft.date=2022-04&rft.volume=302&rft.spage=117492&rft.pages=117492-&rft.artnum=117492&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2022.117492&rft_dat=%3Cproquest_cross%3E2637406480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637406480&rft_id=info:pmid/&rft_els_id=S0924013622000048&rfr_iscdi=true