MIMO auto-regressive modeling-based generalized predictive control for grid-connected hybrid systems

In this paper, we propose an energy management model for grid-connected hybrid systems. This model is based on the coupling of a multiple input multiple output (MIMO) AutoRegressive Moving Average with eXogenous inputs (ARMAX) model with generalized predictive control (GPC). The ARMAX model performs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2022-01, Vol.97, p.107636, Article 107636
Hauptverfasser: Franco, Ricardo A.P., Cardoso, Álisson A., Filho, Gilberto Lopes, Vieira, Flávio H.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107636
container_title Computers & electrical engineering
container_volume 97
creator Franco, Ricardo A.P.
Cardoso, Álisson A.
Filho, Gilberto Lopes
Vieira, Flávio H.T.
description In this paper, we propose an energy management model for grid-connected hybrid systems. This model is based on the coupling of a multiple input multiple output (MIMO) AutoRegressive Moving Average with eXogenous inputs (ARMAX) model with generalized predictive control (GPC). The ARMAX model performs input–output mapping of the electrical system data in terms of energy costs and power values. The GPC system receives the input–output mapping provided by the ARMAX model and performs energy management by minimizing the consumed energy cost in the load. Cost minimization is accomplished by optimizing the use of renewable energy sources, thus consuming less energy from the grid. The effectiveness of the proposed model is verified, comparing its computational and experimental results to those of a conventional control model and a model predictive control approach presented in the literature. [Display omitted] •The ARMAX-MIMO-GPC model is an energy management model for hybrid electrical systems.•The model is based on the ARMAX associated with generalized predictive control.•The model minimizes energy supplied by grid and the load consumed energy cost.•Results show that load demand is attained avoiding using energy supplied by the grid.
doi_str_mv 10.1016/j.compeleceng.2021.107636
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637404052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790621005620</els_id><sourcerecordid>2637404052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f354dcf75f0b3af26cc93aff6b1c050fe63dff9d8d0b74800ed7ef86d0e87cca3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD0GsXSYvO1miikelVt3A2krscXCUxMFOK5Wvx1VYsGQ1M1d3ZnQPIfcxrGKI2WO7krYfsUOJQ7NKIImDzlnKLsgiLnhJgef5JVkAZDnlJbBrcuN9C2FmcbEgarfZ7aPqMFnqsHHovTli1FuFnRkaWlceVdTggK7qzHfoR4fKyOnsknaYnO0ibV3UOKNoEAaUU3B9nuogRP7kJ-z9LbnSVefx7rcuycfL8_v6jW73r5v105bKpEwnqtM8U1LzXEOdVjphUpahalbHEnLQyFKldakKBTXPCgBUHHXBFGDBpazSJXmY747Ofh3QT6K1BzeElyJhKc8ggzwJrnJ2SWe9d6jF6ExfuZOIQZyhilb8gSrOUMUMNeyu510MMY4GnfDS4CADExeSC2XNP678AFbEiTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637404052</pqid></control><display><type>article</type><title>MIMO auto-regressive modeling-based generalized predictive control for grid-connected hybrid systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Franco, Ricardo A.P. ; Cardoso, Álisson A. ; Filho, Gilberto Lopes ; Vieira, Flávio H.T.</creator><creatorcontrib>Franco, Ricardo A.P. ; Cardoso, Álisson A. ; Filho, Gilberto Lopes ; Vieira, Flávio H.T.</creatorcontrib><description>In this paper, we propose an energy management model for grid-connected hybrid systems. This model is based on the coupling of a multiple input multiple output (MIMO) AutoRegressive Moving Average with eXogenous inputs (ARMAX) model with generalized predictive control (GPC). The ARMAX model performs input–output mapping of the electrical system data in terms of energy costs and power values. The GPC system receives the input–output mapping provided by the ARMAX model and performs energy management by minimizing the consumed energy cost in the load. Cost minimization is accomplished by optimizing the use of renewable energy sources, thus consuming less energy from the grid. The effectiveness of the proposed model is verified, comparing its computational and experimental results to those of a conventional control model and a model predictive control approach presented in the literature. [Display omitted] •The ARMAX-MIMO-GPC model is an energy management model for hybrid electrical systems.•The model is based on the ARMAX associated with generalized predictive control.•The model minimizes energy supplied by grid and the load consumed energy cost.•Results show that load demand is attained avoiding using energy supplied by the grid.</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2021.107636</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Alternate energies ; Autoregressive modeling ; Autoregressive moving-average models ; Energy costs ; Energy management ; Energy management model ; Generalized predictive control ; Hybrid systems ; Integrated grids ; Mapping ; MIMO (control systems) ; Optimization ; Predictive control ; Renewable energy sources</subject><ispartof>Computers &amp; electrical engineering, 2022-01, Vol.97, p.107636, Article 107636</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-f354dcf75f0b3af26cc93aff6b1c050fe63dff9d8d0b74800ed7ef86d0e87cca3</cites><orcidid>0000-0003-2687-2352 ; 0000-0001-7169-3367 ; 0000-0003-3572-4036 ; 0000-0003-4850-6978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compeleceng.2021.107636$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Franco, Ricardo A.P.</creatorcontrib><creatorcontrib>Cardoso, Álisson A.</creatorcontrib><creatorcontrib>Filho, Gilberto Lopes</creatorcontrib><creatorcontrib>Vieira, Flávio H.T.</creatorcontrib><title>MIMO auto-regressive modeling-based generalized predictive control for grid-connected hybrid systems</title><title>Computers &amp; electrical engineering</title><description>In this paper, we propose an energy management model for grid-connected hybrid systems. This model is based on the coupling of a multiple input multiple output (MIMO) AutoRegressive Moving Average with eXogenous inputs (ARMAX) model with generalized predictive control (GPC). The ARMAX model performs input–output mapping of the electrical system data in terms of energy costs and power values. The GPC system receives the input–output mapping provided by the ARMAX model and performs energy management by minimizing the consumed energy cost in the load. Cost minimization is accomplished by optimizing the use of renewable energy sources, thus consuming less energy from the grid. The effectiveness of the proposed model is verified, comparing its computational and experimental results to those of a conventional control model and a model predictive control approach presented in the literature. [Display omitted] •The ARMAX-MIMO-GPC model is an energy management model for hybrid electrical systems.•The model is based on the ARMAX associated with generalized predictive control.•The model minimizes energy supplied by grid and the load consumed energy cost.•Results show that load demand is attained avoiding using energy supplied by the grid.</description><subject>Alternate energies</subject><subject>Autoregressive modeling</subject><subject>Autoregressive moving-average models</subject><subject>Energy costs</subject><subject>Energy management</subject><subject>Energy management model</subject><subject>Generalized predictive control</subject><subject>Hybrid systems</subject><subject>Integrated grids</subject><subject>Mapping</subject><subject>MIMO (control systems)</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Renewable energy sources</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD0GsXSYvO1miikelVt3A2krscXCUxMFOK5Wvx1VYsGQ1M1d3ZnQPIfcxrGKI2WO7krYfsUOJQ7NKIImDzlnKLsgiLnhJgef5JVkAZDnlJbBrcuN9C2FmcbEgarfZ7aPqMFnqsHHovTli1FuFnRkaWlceVdTggK7qzHfoR4fKyOnsknaYnO0ibV3UOKNoEAaUU3B9nuogRP7kJ-z9LbnSVefx7rcuycfL8_v6jW73r5v105bKpEwnqtM8U1LzXEOdVjphUpahalbHEnLQyFKldakKBTXPCgBUHHXBFGDBpazSJXmY747Ofh3QT6K1BzeElyJhKc8ggzwJrnJ2SWe9d6jF6ExfuZOIQZyhilb8gSrOUMUMNeyu510MMY4GnfDS4CADExeSC2XNP678AFbEiTI</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Franco, Ricardo A.P.</creator><creator>Cardoso, Álisson A.</creator><creator>Filho, Gilberto Lopes</creator><creator>Vieira, Flávio H.T.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2687-2352</orcidid><orcidid>https://orcid.org/0000-0001-7169-3367</orcidid><orcidid>https://orcid.org/0000-0003-3572-4036</orcidid><orcidid>https://orcid.org/0000-0003-4850-6978</orcidid></search><sort><creationdate>202201</creationdate><title>MIMO auto-regressive modeling-based generalized predictive control for grid-connected hybrid systems</title><author>Franco, Ricardo A.P. ; Cardoso, Álisson A. ; Filho, Gilberto Lopes ; Vieira, Flávio H.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f354dcf75f0b3af26cc93aff6b1c050fe63dff9d8d0b74800ed7ef86d0e87cca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternate energies</topic><topic>Autoregressive modeling</topic><topic>Autoregressive moving-average models</topic><topic>Energy costs</topic><topic>Energy management</topic><topic>Energy management model</topic><topic>Generalized predictive control</topic><topic>Hybrid systems</topic><topic>Integrated grids</topic><topic>Mapping</topic><topic>MIMO (control systems)</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Renewable energy sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco, Ricardo A.P.</creatorcontrib><creatorcontrib>Cardoso, Álisson A.</creatorcontrib><creatorcontrib>Filho, Gilberto Lopes</creatorcontrib><creatorcontrib>Vieira, Flávio H.T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco, Ricardo A.P.</au><au>Cardoso, Álisson A.</au><au>Filho, Gilberto Lopes</au><au>Vieira, Flávio H.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIMO auto-regressive modeling-based generalized predictive control for grid-connected hybrid systems</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2022-01</date><risdate>2022</risdate><volume>97</volume><spage>107636</spage><pages>107636-</pages><artnum>107636</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>In this paper, we propose an energy management model for grid-connected hybrid systems. This model is based on the coupling of a multiple input multiple output (MIMO) AutoRegressive Moving Average with eXogenous inputs (ARMAX) model with generalized predictive control (GPC). The ARMAX model performs input–output mapping of the electrical system data in terms of energy costs and power values. The GPC system receives the input–output mapping provided by the ARMAX model and performs energy management by minimizing the consumed energy cost in the load. Cost minimization is accomplished by optimizing the use of renewable energy sources, thus consuming less energy from the grid. The effectiveness of the proposed model is verified, comparing its computational and experimental results to those of a conventional control model and a model predictive control approach presented in the literature. [Display omitted] •The ARMAX-MIMO-GPC model is an energy management model for hybrid electrical systems.•The model is based on the ARMAX associated with generalized predictive control.•The model minimizes energy supplied by grid and the load consumed energy cost.•Results show that load demand is attained avoiding using energy supplied by the grid.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2021.107636</doi><orcidid>https://orcid.org/0000-0003-2687-2352</orcidid><orcidid>https://orcid.org/0000-0001-7169-3367</orcidid><orcidid>https://orcid.org/0000-0003-3572-4036</orcidid><orcidid>https://orcid.org/0000-0003-4850-6978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2022-01, Vol.97, p.107636, Article 107636
issn 0045-7906
1879-0755
language eng
recordid cdi_proquest_journals_2637404052
source Elsevier ScienceDirect Journals Complete
subjects Alternate energies
Autoregressive modeling
Autoregressive moving-average models
Energy costs
Energy management
Energy management model
Generalized predictive control
Hybrid systems
Integrated grids
Mapping
MIMO (control systems)
Optimization
Predictive control
Renewable energy sources
title MIMO auto-regressive modeling-based generalized predictive control for grid-connected hybrid systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIMO%20auto-regressive%20modeling-based%20generalized%20predictive%20control%20for%20grid-connected%20hybrid%20systems&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Franco,%20Ricardo%20A.P.&rft.date=2022-01&rft.volume=97&rft.spage=107636&rft.pages=107636-&rft.artnum=107636&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2021.107636&rft_dat=%3Cproquest_cross%3E2637404052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637404052&rft_id=info:pmid/&rft_els_id=S0045790621005620&rfr_iscdi=true