A hybrid multi-population metaheuristic applied to load-sharing optimization of gas compressor stations
In this paper, a hybrid population-based, nature-inspired metaheuristic algorithm is developed and applied to solve the load-sharing optimization problem, which is a common problem that appears in many industrial applications. The proposed algorithm is a hybrid multi-population metaheuristic that co...
Gespeichert in:
Veröffentlicht in: | Computers & electrical engineering 2022-01, Vol.97, p.107632, Article 107632 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107632 |
container_title | Computers & electrical engineering |
container_volume | 97 |
creator | Rodrigues, Leonardo R. |
description | In this paper, a hybrid population-based, nature-inspired metaheuristic algorithm is developed and applied to solve the load-sharing optimization problem, which is a common problem that appears in many industrial applications. The proposed algorithm is a hybrid multi-population metaheuristic that combines the diversification capability of the Crow Search Algorithm (CSA) and the intensification capability of the Symbiotic Organisms Search (SOS). It uses two subpopulations. One subpopulation evolves according to the CSA algorithm and is responsible for finding promising regions in the search space. The second subpopulation evolves according to the SOS algorithm and is responsible for performing a refined search in the promising regions to find the best solution for the problem. The performance of the proposed algorithm is compared with the performance of five competing algorithms, including the stand-alone versions of CSA and SOS. The results obtained show that the proposed CSA-SOS outperformed all the competing algorithms in all experiments.
[Display omitted]
•A hybrid metaheuristic combining the best features of CSA and SOS is developed.•Two populations evolve to implement the exploration and exploitation capabilities.•CSA is used to explore the search space and to identify promising regions.•SOS intensifies the search in the promising regions identified by CSA. |
doi_str_mv | 10.1016/j.compeleceng.2021.107632 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637401611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790621005590</els_id><sourcerecordid>2637401611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d2aba627d1bee00884143e3a3410d1b2c16c88d281bd929ef9e8eefe2085baa3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD0asU2zn5SyripdUiU33lmNPUkdJHGwHqXw9LmHBktVoZu6dx0HonpINJbR47DbKDhP0oGBsN4wwGutlkbILtKK8rBJS5vklWhGS5UlZkeIa3XjfkZgXlK9Qu8XHU-2MxsPcB5NMdpp7GYwd8QBBHmF2xgejsJym3oDGweLeSp34o3RmbLGdghnM12KxDW6lx-eTHHhvHfbhp-Nv0VUjew93v3GNDs9Ph91rsn9_edtt94lKsyokmslaFqzUtAYghPOMZimkMs0oiTWmaKE414zTWlesgqYCDtAAIzyvpUzX6GEZOzn7MYMPorOzG-NGwYq0zCIySqOqWlTKWe8dNGJyZpDuJCgRZ6yiE3-wijNWsWCN3t3ihfjFpwEnvDIwKtDGgQpCW_OPKd-AY4mG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637401611</pqid></control><display><type>article</type><title>A hybrid multi-population metaheuristic applied to load-sharing optimization of gas compressor stations</title><source>Elsevier ScienceDirect Journals</source><creator>Rodrigues, Leonardo R.</creator><creatorcontrib>Rodrigues, Leonardo R.</creatorcontrib><description>In this paper, a hybrid population-based, nature-inspired metaheuristic algorithm is developed and applied to solve the load-sharing optimization problem, which is a common problem that appears in many industrial applications. The proposed algorithm is a hybrid multi-population metaheuristic that combines the diversification capability of the Crow Search Algorithm (CSA) and the intensification capability of the Symbiotic Organisms Search (SOS). It uses two subpopulations. One subpopulation evolves according to the CSA algorithm and is responsible for finding promising regions in the search space. The second subpopulation evolves according to the SOS algorithm and is responsible for performing a refined search in the promising regions to find the best solution for the problem. The performance of the proposed algorithm is compared with the performance of five competing algorithms, including the stand-alone versions of CSA and SOS. The results obtained show that the proposed CSA-SOS outperformed all the competing algorithms in all experiments.
[Display omitted]
•A hybrid metaheuristic combining the best features of CSA and SOS is developed.•Two populations evolve to implement the exploration and exploitation capabilities.•CSA is used to explore the search space and to identify promising regions.•SOS intensifies the search in the promising regions identified by CSA.</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2021.107632</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Crow Search Algorithm ; Gas compressor station ; Gas compressors ; Heuristic methods ; Hybrid algorithms ; Industrial applications ; Metaheuristic ; Multi-population ; Optimization ; Search algorithms ; Symbiotic Organisms Search</subject><ispartof>Computers & electrical engineering, 2022-01, Vol.97, p.107632, Article 107632</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d2aba627d1bee00884143e3a3410d1b2c16c88d281bd929ef9e8eefe2085baa3</citedby><cites>FETCH-LOGICAL-c349t-d2aba627d1bee00884143e3a3410d1b2c16c88d281bd929ef9e8eefe2085baa3</cites><orcidid>0000-0003-3843-9265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compeleceng.2021.107632$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Rodrigues, Leonardo R.</creatorcontrib><title>A hybrid multi-population metaheuristic applied to load-sharing optimization of gas compressor stations</title><title>Computers & electrical engineering</title><description>In this paper, a hybrid population-based, nature-inspired metaheuristic algorithm is developed and applied to solve the load-sharing optimization problem, which is a common problem that appears in many industrial applications. The proposed algorithm is a hybrid multi-population metaheuristic that combines the diversification capability of the Crow Search Algorithm (CSA) and the intensification capability of the Symbiotic Organisms Search (SOS). It uses two subpopulations. One subpopulation evolves according to the CSA algorithm and is responsible for finding promising regions in the search space. The second subpopulation evolves according to the SOS algorithm and is responsible for performing a refined search in the promising regions to find the best solution for the problem. The performance of the proposed algorithm is compared with the performance of five competing algorithms, including the stand-alone versions of CSA and SOS. The results obtained show that the proposed CSA-SOS outperformed all the competing algorithms in all experiments.
[Display omitted]
•A hybrid metaheuristic combining the best features of CSA and SOS is developed.•Two populations evolve to implement the exploration and exploitation capabilities.•CSA is used to explore the search space and to identify promising regions.•SOS intensifies the search in the promising regions identified by CSA.</description><subject>Algorithms</subject><subject>Crow Search Algorithm</subject><subject>Gas compressor station</subject><subject>Gas compressors</subject><subject>Heuristic methods</subject><subject>Hybrid algorithms</subject><subject>Industrial applications</subject><subject>Metaheuristic</subject><subject>Multi-population</subject><subject>Optimization</subject><subject>Search algorithms</subject><subject>Symbiotic Organisms Search</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD0asU2zn5SyripdUiU33lmNPUkdJHGwHqXw9LmHBktVoZu6dx0HonpINJbR47DbKDhP0oGBsN4wwGutlkbILtKK8rBJS5vklWhGS5UlZkeIa3XjfkZgXlK9Qu8XHU-2MxsPcB5NMdpp7GYwd8QBBHmF2xgejsJym3oDGweLeSp34o3RmbLGdghnM12KxDW6lx-eTHHhvHfbhp-Nv0VUjew93v3GNDs9Ph91rsn9_edtt94lKsyokmslaFqzUtAYghPOMZimkMs0oiTWmaKE414zTWlesgqYCDtAAIzyvpUzX6GEZOzn7MYMPorOzG-NGwYq0zCIySqOqWlTKWe8dNGJyZpDuJCgRZ6yiE3-wijNWsWCN3t3ihfjFpwEnvDIwKtDGgQpCW_OPKd-AY4mG</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Rodrigues, Leonardo R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3843-9265</orcidid></search><sort><creationdate>202201</creationdate><title>A hybrid multi-population metaheuristic applied to load-sharing optimization of gas compressor stations</title><author>Rodrigues, Leonardo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d2aba627d1bee00884143e3a3410d1b2c16c88d281bd929ef9e8eefe2085baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Crow Search Algorithm</topic><topic>Gas compressor station</topic><topic>Gas compressors</topic><topic>Heuristic methods</topic><topic>Hybrid algorithms</topic><topic>Industrial applications</topic><topic>Metaheuristic</topic><topic>Multi-population</topic><topic>Optimization</topic><topic>Search algorithms</topic><topic>Symbiotic Organisms Search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Leonardo R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Leonardo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid multi-population metaheuristic applied to load-sharing optimization of gas compressor stations</atitle><jtitle>Computers & electrical engineering</jtitle><date>2022-01</date><risdate>2022</risdate><volume>97</volume><spage>107632</spage><pages>107632-</pages><artnum>107632</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>In this paper, a hybrid population-based, nature-inspired metaheuristic algorithm is developed and applied to solve the load-sharing optimization problem, which is a common problem that appears in many industrial applications. The proposed algorithm is a hybrid multi-population metaheuristic that combines the diversification capability of the Crow Search Algorithm (CSA) and the intensification capability of the Symbiotic Organisms Search (SOS). It uses two subpopulations. One subpopulation evolves according to the CSA algorithm and is responsible for finding promising regions in the search space. The second subpopulation evolves according to the SOS algorithm and is responsible for performing a refined search in the promising regions to find the best solution for the problem. The performance of the proposed algorithm is compared with the performance of five competing algorithms, including the stand-alone versions of CSA and SOS. The results obtained show that the proposed CSA-SOS outperformed all the competing algorithms in all experiments.
[Display omitted]
•A hybrid metaheuristic combining the best features of CSA and SOS is developed.•Two populations evolve to implement the exploration and exploitation capabilities.•CSA is used to explore the search space and to identify promising regions.•SOS intensifies the search in the promising regions identified by CSA.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2021.107632</doi><orcidid>https://orcid.org/0000-0003-3843-9265</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7906 |
ispartof | Computers & electrical engineering, 2022-01, Vol.97, p.107632, Article 107632 |
issn | 0045-7906 1879-0755 |
language | eng |
recordid | cdi_proquest_journals_2637401611 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Crow Search Algorithm Gas compressor station Gas compressors Heuristic methods Hybrid algorithms Industrial applications Metaheuristic Multi-population Optimization Search algorithms Symbiotic Organisms Search |
title | A hybrid multi-population metaheuristic applied to load-sharing optimization of gas compressor stations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20multi-population%20metaheuristic%20applied%20to%20load-sharing%20optimization%20of%20gas%20compressor%20stations&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Rodrigues,%20Leonardo%20R.&rft.date=2022-01&rft.volume=97&rft.spage=107632&rft.pages=107632-&rft.artnum=107632&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2021.107632&rft_dat=%3Cproquest_cross%3E2637401611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637401611&rft_id=info:pmid/&rft_els_id=S0045790621005590&rfr_iscdi=true |