Numerical simulation of the airflow at the world’s largest concentrated solar power plant in a desert region

•Wind regimes of the largest central-tower CSP plant in the world were simulated.•Heliostats increase surface roughness and decrease the wind speed by 20%.•The wind and sand barriers reduced the wind speed within 100 m.•Suggestions were proposed for managing and designing CSP plants in desert region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2022-01, Vol.232, p.421-432
Hauptverfasser: Xiao, Jianhua, Ye, Dongting, Xie, Xiaosong, Yao, Zhengyi, Qu, Jianjun, Liu, Benli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue
container_start_page 421
container_title Solar energy
container_volume 232
creator Xiao, Jianhua
Ye, Dongting
Xie, Xiaosong
Yao, Zhengyi
Qu, Jianjun
Liu, Benli
description •Wind regimes of the largest central-tower CSP plant in the world were simulated.•Heliostats increase surface roughness and decrease the wind speed by 20%.•The wind and sand barriers reduced the wind speed within 100 m.•Suggestions were proposed for managing and designing CSP plants in desert regions. Concentrated solar power (CSP) plants in desert regions disturb the wind regime and blowing sand, thus altering surface erosion and accumulation processes. We investigated wind regimes around the largest central-tower CSP plant in the world in Dubai in a desert environment using computational fluid dynamics to simulate the flows for the entire area, the wind and sand barriers, the central tower, and the heliostats. Over the entire area, increased surface roughness caused by the heliostats reduced wind speed by 20%, but the wind gradually returned to its original speed and direction after the return-flow region. Wind and sand barriers significantly reduced wind speed within 100 m and up to 200 m after the barrier. The area downwind of these barriers showed obvious airflow disruptions, with wind speeds decreasing by more than 50% at a distance of 100 m. The heliostat array reduced wind speed by about 20% locally, but had no effect on the overall wind field. Upwind and downwind of the central tower, the pressure and wind changed greatly, resulting in upwind erosion and downwind sand accumulation. We provide several recommendations regarding the management and design of CSP plants in desert regions.
doi_str_mv 10.1016/j.solener.2022.01.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637400057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X22000056</els_id><sourcerecordid>2637400057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8fd5be7201531256ff4e3ee7c9657f797185ebeefc7e65798a9a4f488e8effe73</originalsourceid><addsrcrecordid>eNqFkM1OAyEUhYnRxFp9BBMS1zPC_DGzMqbxL2l0o4k7QplLZUKhAmPjztfw9XwSqe3eDTdw7zmc-yF0TklOCW0uhzw4AxZ8XpCiyAnNCakP0IRWjGa0qNkhmhBSthnpitdjdBLCQAhltGUTZB_HFXgthcFBr0YjonYWO4XjG2ChvTJug0X8u26cN_3P13fARvglhIilsxJs9CJCj1MI4fHabSCdRtiItcUC9xDAR-xhmZxP0ZESJsDZvk7Ry-3N8-w-mz_dPcyu55ksSxazVvX1AlhBaF2mBRqlKigBmOyaminWpew1LACUZJBeulZ0olJV20ILSgErp-hi57v27n1MUfngRm_Tl7xoSlaRRGg7Ve-mpHcheFB87fVK-E9OCd-i5QPfo-VbtJxQnoRJd7XTQVrhQ6dukBoSil57kJH3Tv_j8AtboYgV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637400057</pqid></control><display><type>article</type><title>Numerical simulation of the airflow at the world’s largest concentrated solar power plant in a desert region</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xiao, Jianhua ; Ye, Dongting ; Xie, Xiaosong ; Yao, Zhengyi ; Qu, Jianjun ; Liu, Benli</creator><creatorcontrib>Xiao, Jianhua ; Ye, Dongting ; Xie, Xiaosong ; Yao, Zhengyi ; Qu, Jianjun ; Liu, Benli</creatorcontrib><description>•Wind regimes of the largest central-tower CSP plant in the world were simulated.•Heliostats increase surface roughness and decrease the wind speed by 20%.•The wind and sand barriers reduced the wind speed within 100 m.•Suggestions were proposed for managing and designing CSP plants in desert regions. Concentrated solar power (CSP) plants in desert regions disturb the wind regime and blowing sand, thus altering surface erosion and accumulation processes. We investigated wind regimes around the largest central-tower CSP plant in the world in Dubai in a desert environment using computational fluid dynamics to simulate the flows for the entire area, the wind and sand barriers, the central tower, and the heliostats. Over the entire area, increased surface roughness caused by the heliostats reduced wind speed by 20%, but the wind gradually returned to its original speed and direction after the return-flow region. Wind and sand barriers significantly reduced wind speed within 100 m and up to 200 m after the barrier. The area downwind of these barriers showed obvious airflow disruptions, with wind speeds decreasing by more than 50% at a distance of 100 m. The heliostat array reduced wind speed by about 20% locally, but had no effect on the overall wind field. Upwind and downwind of the central tower, the pressure and wind changed greatly, resulting in upwind erosion and downwind sand accumulation. We provide several recommendations regarding the management and design of CSP plants in desert regions.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2022.01.005</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Accumulation ; Air flow ; Computational fluid dynamics ; Computer applications ; Concentrated solar power ; Desert environments ; Desert plants ; Deserts ; Fluid dynamics ; Heliostats ; Hydrodynamics ; Mathematical models ; Power plants ; Return flow ; Sand ; Sand bars ; Sand damage ; Solar energy ; Solar power plants ; Surface roughness ; Wind ; Wind effects ; Wind erosion ; Wind flow field ; Wind speed</subject><ispartof>Solar energy, 2022-01, Vol.232, p.421-432</ispartof><rights>2022</rights><rights>Copyright Pergamon Press Inc. Jan 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8fd5be7201531256ff4e3ee7c9657f797185ebeefc7e65798a9a4f488e8effe73</citedby><cites>FETCH-LOGICAL-c337t-8fd5be7201531256ff4e3ee7c9657f797185ebeefc7e65798a9a4f488e8effe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038092X22000056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xiao, Jianhua</creatorcontrib><creatorcontrib>Ye, Dongting</creatorcontrib><creatorcontrib>Xie, Xiaosong</creatorcontrib><creatorcontrib>Yao, Zhengyi</creatorcontrib><creatorcontrib>Qu, Jianjun</creatorcontrib><creatorcontrib>Liu, Benli</creatorcontrib><title>Numerical simulation of the airflow at the world’s largest concentrated solar power plant in a desert region</title><title>Solar energy</title><description>•Wind regimes of the largest central-tower CSP plant in the world were simulated.•Heliostats increase surface roughness and decrease the wind speed by 20%.•The wind and sand barriers reduced the wind speed within 100 m.•Suggestions were proposed for managing and designing CSP plants in desert regions. Concentrated solar power (CSP) plants in desert regions disturb the wind regime and blowing sand, thus altering surface erosion and accumulation processes. We investigated wind regimes around the largest central-tower CSP plant in the world in Dubai in a desert environment using computational fluid dynamics to simulate the flows for the entire area, the wind and sand barriers, the central tower, and the heliostats. Over the entire area, increased surface roughness caused by the heliostats reduced wind speed by 20%, but the wind gradually returned to its original speed and direction after the return-flow region. Wind and sand barriers significantly reduced wind speed within 100 m and up to 200 m after the barrier. The area downwind of these barriers showed obvious airflow disruptions, with wind speeds decreasing by more than 50% at a distance of 100 m. The heliostat array reduced wind speed by about 20% locally, but had no effect on the overall wind field. Upwind and downwind of the central tower, the pressure and wind changed greatly, resulting in upwind erosion and downwind sand accumulation. We provide several recommendations regarding the management and design of CSP plants in desert regions.</description><subject>Accumulation</subject><subject>Air flow</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Concentrated solar power</subject><subject>Desert environments</subject><subject>Desert plants</subject><subject>Deserts</subject><subject>Fluid dynamics</subject><subject>Heliostats</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Power plants</subject><subject>Return flow</subject><subject>Sand</subject><subject>Sand bars</subject><subject>Sand damage</subject><subject>Solar energy</subject><subject>Solar power plants</subject><subject>Surface roughness</subject><subject>Wind</subject><subject>Wind effects</subject><subject>Wind erosion</subject><subject>Wind flow field</subject><subject>Wind speed</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAyEUhYnRxFp9BBMS1zPC_DGzMqbxL2l0o4k7QplLZUKhAmPjztfw9XwSqe3eDTdw7zmc-yF0TklOCW0uhzw4AxZ8XpCiyAnNCakP0IRWjGa0qNkhmhBSthnpitdjdBLCQAhltGUTZB_HFXgthcFBr0YjonYWO4XjG2ChvTJug0X8u26cN_3P13fARvglhIilsxJs9CJCj1MI4fHabSCdRtiItcUC9xDAR-xhmZxP0ZESJsDZvk7Ry-3N8-w-mz_dPcyu55ksSxazVvX1AlhBaF2mBRqlKigBmOyaminWpew1LACUZJBeulZ0olJV20ILSgErp-hi57v27n1MUfngRm_Tl7xoSlaRRGg7Ve-mpHcheFB87fVK-E9OCd-i5QPfo-VbtJxQnoRJd7XTQVrhQ6dukBoSil57kJH3Tv_j8AtboYgV</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Xiao, Jianhua</creator><creator>Ye, Dongting</creator><creator>Xie, Xiaosong</creator><creator>Yao, Zhengyi</creator><creator>Qu, Jianjun</creator><creator>Liu, Benli</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220115</creationdate><title>Numerical simulation of the airflow at the world’s largest concentrated solar power plant in a desert region</title><author>Xiao, Jianhua ; Ye, Dongting ; Xie, Xiaosong ; Yao, Zhengyi ; Qu, Jianjun ; Liu, Benli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8fd5be7201531256ff4e3ee7c9657f797185ebeefc7e65798a9a4f488e8effe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accumulation</topic><topic>Air flow</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Concentrated solar power</topic><topic>Desert environments</topic><topic>Desert plants</topic><topic>Deserts</topic><topic>Fluid dynamics</topic><topic>Heliostats</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Power plants</topic><topic>Return flow</topic><topic>Sand</topic><topic>Sand bars</topic><topic>Sand damage</topic><topic>Solar energy</topic><topic>Solar power plants</topic><topic>Surface roughness</topic><topic>Wind</topic><topic>Wind effects</topic><topic>Wind erosion</topic><topic>Wind flow field</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jianhua</creatorcontrib><creatorcontrib>Ye, Dongting</creatorcontrib><creatorcontrib>Xie, Xiaosong</creatorcontrib><creatorcontrib>Yao, Zhengyi</creatorcontrib><creatorcontrib>Qu, Jianjun</creatorcontrib><creatorcontrib>Liu, Benli</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Jianhua</au><au>Ye, Dongting</au><au>Xie, Xiaosong</au><au>Yao, Zhengyi</au><au>Qu, Jianjun</au><au>Liu, Benli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of the airflow at the world’s largest concentrated solar power plant in a desert region</atitle><jtitle>Solar energy</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>232</volume><spage>421</spage><epage>432</epage><pages>421-432</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•Wind regimes of the largest central-tower CSP plant in the world were simulated.•Heliostats increase surface roughness and decrease the wind speed by 20%.•The wind and sand barriers reduced the wind speed within 100 m.•Suggestions were proposed for managing and designing CSP plants in desert regions. Concentrated solar power (CSP) plants in desert regions disturb the wind regime and blowing sand, thus altering surface erosion and accumulation processes. We investigated wind regimes around the largest central-tower CSP plant in the world in Dubai in a desert environment using computational fluid dynamics to simulate the flows for the entire area, the wind and sand barriers, the central tower, and the heliostats. Over the entire area, increased surface roughness caused by the heliostats reduced wind speed by 20%, but the wind gradually returned to its original speed and direction after the return-flow region. Wind and sand barriers significantly reduced wind speed within 100 m and up to 200 m after the barrier. The area downwind of these barriers showed obvious airflow disruptions, with wind speeds decreasing by more than 50% at a distance of 100 m. The heliostat array reduced wind speed by about 20% locally, but had no effect on the overall wind field. Upwind and downwind of the central tower, the pressure and wind changed greatly, resulting in upwind erosion and downwind sand accumulation. We provide several recommendations regarding the management and design of CSP plants in desert regions.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2022.01.005</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2022-01, Vol.232, p.421-432
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2637400057
source Elsevier ScienceDirect Journals Complete
subjects Accumulation
Air flow
Computational fluid dynamics
Computer applications
Concentrated solar power
Desert environments
Desert plants
Deserts
Fluid dynamics
Heliostats
Hydrodynamics
Mathematical models
Power plants
Return flow
Sand
Sand bars
Sand damage
Solar energy
Solar power plants
Surface roughness
Wind
Wind effects
Wind erosion
Wind flow field
Wind speed
title Numerical simulation of the airflow at the world’s largest concentrated solar power plant in a desert region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20the%20airflow%20at%20the%20world%E2%80%99s%20largest%20concentrated%20solar%20power%20plant%20in%20a%20desert%20region&rft.jtitle=Solar%20energy&rft.au=Xiao,%20Jianhua&rft.date=2022-01-15&rft.volume=232&rft.spage=421&rft.epage=432&rft.pages=421-432&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2022.01.005&rft_dat=%3Cproquest_cross%3E2637400057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637400057&rft_id=info:pmid/&rft_els_id=S0038092X22000056&rfr_iscdi=true