Electric field induced macroscopic cellular phase of nanoparticles

A suspension of nanoparticles with very low volume fraction is found to assemble into a macroscopic cellular phase that is composed of particle-rich walls and particle-free voids under the collective influence of AC and DC voltages. Systematic study of this phase transition shows that it was the res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2022-03, Vol.18 (1), p.1991-1996
Hauptverfasser: Rendos, Abigail, Cao, Wenhan, Chern, Margaret, Lauricella, Marco, Succi, Sauro, Werner, Jörg G, Dennis, Allison M, Brown, Keith A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1996
container_issue 1
container_start_page 1991
container_title Soft matter
container_volume 18
creator Rendos, Abigail
Cao, Wenhan
Chern, Margaret
Lauricella, Marco
Succi, Sauro
Werner, Jörg G
Dennis, Allison M
Brown, Keith A
description A suspension of nanoparticles with very low volume fraction is found to assemble into a macroscopic cellular phase that is composed of particle-rich walls and particle-free voids under the collective influence of AC and DC voltages. Systematic study of this phase transition shows that it was the result of electrophoretic assembly into a two-dimensional configuration followed by spinodal decomposition into particle-rich walls and particle-poor cells mediated principally by electrohydrodynamic flow. This mechanistic understanding reveals two characteristics needed for a cellular phase to form, namely (1) a system that is considered two dimensional and (2) short-range attractive, long-range repulsive interparticle interactions. In addition to determining the mechanism underpinning the formation of the cellular phase, this work presents a method to reversibly assemble microscale continuous structures out of nanoscale particles in a manner that may enable the creation of materials that impact diverse fields including energy storage and filtration. Nanoparticles assemble into a macroscopic cellular phase upon the simultaneous application of an AC and DC voltage. First, the particles move through electrophoresis into a 2D film and then electrohydrodynamic flows cause spinodal decomposition.
doi_str_mv 10.1039/d1sm01650d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637279596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637279596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5547f60a39b3c7da413b0800bff584539cb0d1b81ad3f4bb607f2737aa06f6663</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMojo5u3CsFNyJUk940aZc6Mz5gxIUK7kqe2CF9mLQL_72tM47g6l44H4dzz0XohOArgiG_1iRUmLAU6x10QDilMctotrvd4X2CDkNYYQwZJWwfTSDFGU4AH6DbhTOq86WKbGmcjspa98roqBLKN0E17aAo41zvhI_aDxFM1NioFnXTCt-VyplwhPascMEcb-YUvd0tXmcP8fL5_nF2s4wVAO_iNKXcMiwgl6C4FpSAHFJgaW2a0RRyJbEmMiNCg6VSMsxtwoELgZlljMEUXax9W9989iZ0RVWGMZuoTdOHImFJkjOgCR3Q83_oqul9PaQbKOAJz9N8NLxcU-OpwRtbtL6shP8qCC7GZos5eXn6aXY-wGcby15WRm_R3yoH4HQN-KC26t9r4BvI_nwl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637279596</pqid></control><display><type>article</type><title>Electric field induced macroscopic cellular phase of nanoparticles</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry E-Journals</source><creator>Rendos, Abigail ; Cao, Wenhan ; Chern, Margaret ; Lauricella, Marco ; Succi, Sauro ; Werner, Jörg G ; Dennis, Allison M ; Brown, Keith A</creator><creatorcontrib>Rendos, Abigail ; Cao, Wenhan ; Chern, Margaret ; Lauricella, Marco ; Succi, Sauro ; Werner, Jörg G ; Dennis, Allison M ; Brown, Keith A</creatorcontrib><description>A suspension of nanoparticles with very low volume fraction is found to assemble into a macroscopic cellular phase that is composed of particle-rich walls and particle-free voids under the collective influence of AC and DC voltages. Systematic study of this phase transition shows that it was the result of electrophoretic assembly into a two-dimensional configuration followed by spinodal decomposition into particle-rich walls and particle-poor cells mediated principally by electrohydrodynamic flow. This mechanistic understanding reveals two characteristics needed for a cellular phase to form, namely (1) a system that is considered two dimensional and (2) short-range attractive, long-range repulsive interparticle interactions. In addition to determining the mechanism underpinning the formation of the cellular phase, this work presents a method to reversibly assemble microscale continuous structures out of nanoscale particles in a manner that may enable the creation of materials that impact diverse fields including energy storage and filtration. Nanoparticles assemble into a macroscopic cellular phase upon the simultaneous application of an AC and DC voltage. First, the particles move through electrophoresis into a 2D film and then electrohydrodynamic flows cause spinodal decomposition.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm01650d</identifier><identifier>PMID: 35080230</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Electric fields ; Electricity ; Electrohydrodynamics ; Electrophoresis ; Energy storage ; Nanoparticles ; Phase Transition ; Phase transitions ; Spinodal decomposition ; Suspensions ; Walls</subject><ispartof>Soft matter, 2022-03, Vol.18 (1), p.1991-1996</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5547f60a39b3c7da413b0800bff584539cb0d1b81ad3f4bb607f2737aa06f6663</citedby><cites>FETCH-LOGICAL-c337t-5547f60a39b3c7da413b0800bff584539cb0d1b81ad3f4bb607f2737aa06f6663</cites><orcidid>0000-0003-4526-0490 ; 0000-0003-1398-1154 ; 0000-0002-3862-5562 ; 0000-0001-7845-086X ; 0000-0002-2379-2018 ; 0000-0001-5759-9905 ; 0000-0003-3993-5500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35080230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rendos, Abigail</creatorcontrib><creatorcontrib>Cao, Wenhan</creatorcontrib><creatorcontrib>Chern, Margaret</creatorcontrib><creatorcontrib>Lauricella, Marco</creatorcontrib><creatorcontrib>Succi, Sauro</creatorcontrib><creatorcontrib>Werner, Jörg G</creatorcontrib><creatorcontrib>Dennis, Allison M</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><title>Electric field induced macroscopic cellular phase of nanoparticles</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>A suspension of nanoparticles with very low volume fraction is found to assemble into a macroscopic cellular phase that is composed of particle-rich walls and particle-free voids under the collective influence of AC and DC voltages. Systematic study of this phase transition shows that it was the result of electrophoretic assembly into a two-dimensional configuration followed by spinodal decomposition into particle-rich walls and particle-poor cells mediated principally by electrohydrodynamic flow. This mechanistic understanding reveals two characteristics needed for a cellular phase to form, namely (1) a system that is considered two dimensional and (2) short-range attractive, long-range repulsive interparticle interactions. In addition to determining the mechanism underpinning the formation of the cellular phase, this work presents a method to reversibly assemble microscale continuous structures out of nanoscale particles in a manner that may enable the creation of materials that impact diverse fields including energy storage and filtration. Nanoparticles assemble into a macroscopic cellular phase upon the simultaneous application of an AC and DC voltage. First, the particles move through electrophoresis into a 2D film and then electrohydrodynamic flows cause spinodal decomposition.</description><subject>Electric fields</subject><subject>Electricity</subject><subject>Electrohydrodynamics</subject><subject>Electrophoresis</subject><subject>Energy storage</subject><subject>Nanoparticles</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Spinodal decomposition</subject><subject>Suspensions</subject><subject>Walls</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLxDAUhYMojo5u3CsFNyJUk940aZc6Mz5gxIUK7kqe2CF9mLQL_72tM47g6l44H4dzz0XohOArgiG_1iRUmLAU6x10QDilMctotrvd4X2CDkNYYQwZJWwfTSDFGU4AH6DbhTOq86WKbGmcjspa98roqBLKN0E17aAo41zvhI_aDxFM1NioFnXTCt-VyplwhPascMEcb-YUvd0tXmcP8fL5_nF2s4wVAO_iNKXcMiwgl6C4FpSAHFJgaW2a0RRyJbEmMiNCg6VSMsxtwoELgZlljMEUXax9W9989iZ0RVWGMZuoTdOHImFJkjOgCR3Q83_oqul9PaQbKOAJz9N8NLxcU-OpwRtbtL6shP8qCC7GZos5eXn6aXY-wGcby15WRm_R3yoH4HQN-KC26t9r4BvI_nwl</recordid><startdate>20220309</startdate><enddate>20220309</enddate><creator>Rendos, Abigail</creator><creator>Cao, Wenhan</creator><creator>Chern, Margaret</creator><creator>Lauricella, Marco</creator><creator>Succi, Sauro</creator><creator>Werner, Jörg G</creator><creator>Dennis, Allison M</creator><creator>Brown, Keith A</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4526-0490</orcidid><orcidid>https://orcid.org/0000-0003-1398-1154</orcidid><orcidid>https://orcid.org/0000-0002-3862-5562</orcidid><orcidid>https://orcid.org/0000-0001-7845-086X</orcidid><orcidid>https://orcid.org/0000-0002-2379-2018</orcidid><orcidid>https://orcid.org/0000-0001-5759-9905</orcidid><orcidid>https://orcid.org/0000-0003-3993-5500</orcidid></search><sort><creationdate>20220309</creationdate><title>Electric field induced macroscopic cellular phase of nanoparticles</title><author>Rendos, Abigail ; Cao, Wenhan ; Chern, Margaret ; Lauricella, Marco ; Succi, Sauro ; Werner, Jörg G ; Dennis, Allison M ; Brown, Keith A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5547f60a39b3c7da413b0800bff584539cb0d1b81ad3f4bb607f2737aa06f6663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electric fields</topic><topic>Electricity</topic><topic>Electrohydrodynamics</topic><topic>Electrophoresis</topic><topic>Energy storage</topic><topic>Nanoparticles</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Spinodal decomposition</topic><topic>Suspensions</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rendos, Abigail</creatorcontrib><creatorcontrib>Cao, Wenhan</creatorcontrib><creatorcontrib>Chern, Margaret</creatorcontrib><creatorcontrib>Lauricella, Marco</creatorcontrib><creatorcontrib>Succi, Sauro</creatorcontrib><creatorcontrib>Werner, Jörg G</creatorcontrib><creatorcontrib>Dennis, Allison M</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rendos, Abigail</au><au>Cao, Wenhan</au><au>Chern, Margaret</au><au>Lauricella, Marco</au><au>Succi, Sauro</au><au>Werner, Jörg G</au><au>Dennis, Allison M</au><au>Brown, Keith A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field induced macroscopic cellular phase of nanoparticles</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2022-03-09</date><risdate>2022</risdate><volume>18</volume><issue>1</issue><spage>1991</spage><epage>1996</epage><pages>1991-1996</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>A suspension of nanoparticles with very low volume fraction is found to assemble into a macroscopic cellular phase that is composed of particle-rich walls and particle-free voids under the collective influence of AC and DC voltages. Systematic study of this phase transition shows that it was the result of electrophoretic assembly into a two-dimensional configuration followed by spinodal decomposition into particle-rich walls and particle-poor cells mediated principally by electrohydrodynamic flow. This mechanistic understanding reveals two characteristics needed for a cellular phase to form, namely (1) a system that is considered two dimensional and (2) short-range attractive, long-range repulsive interparticle interactions. In addition to determining the mechanism underpinning the formation of the cellular phase, this work presents a method to reversibly assemble microscale continuous structures out of nanoscale particles in a manner that may enable the creation of materials that impact diverse fields including energy storage and filtration. Nanoparticles assemble into a macroscopic cellular phase upon the simultaneous application of an AC and DC voltage. First, the particles move through electrophoresis into a 2D film and then electrohydrodynamic flows cause spinodal decomposition.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35080230</pmid><doi>10.1039/d1sm01650d</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4526-0490</orcidid><orcidid>https://orcid.org/0000-0003-1398-1154</orcidid><orcidid>https://orcid.org/0000-0002-3862-5562</orcidid><orcidid>https://orcid.org/0000-0001-7845-086X</orcidid><orcidid>https://orcid.org/0000-0002-2379-2018</orcidid><orcidid>https://orcid.org/0000-0001-5759-9905</orcidid><orcidid>https://orcid.org/0000-0003-3993-5500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2022-03, Vol.18 (1), p.1991-1996
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_journals_2637279596
source MEDLINE; Alma/SFX Local Collection; Royal Society of Chemistry E-Journals
subjects Electric fields
Electricity
Electrohydrodynamics
Electrophoresis
Energy storage
Nanoparticles
Phase Transition
Phase transitions
Spinodal decomposition
Suspensions
Walls
title Electric field induced macroscopic cellular phase of nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field%20induced%20macroscopic%20cellular%20phase%20of%20nanoparticles&rft.jtitle=Soft%20matter&rft.au=Rendos,%20Abigail&rft.date=2022-03-09&rft.volume=18&rft.issue=1&rft.spage=1991&rft.epage=1996&rft.pages=1991-1996&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm01650d&rft_dat=%3Cproquest_cross%3E2637279596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637279596&rft_id=info:pmid/35080230&rfr_iscdi=true