A MAC Protocol for Underwater Sensor Networks Using Parallel Transmission Variable Time Slots

Dong, W.; Yang, Q.; Huang, X.; Chen, Y., and Sun, S., 2022. A MAC protocol for underwater sensor networks using parallel transmission variable time slots. Journal of Coastal Research, 38(2), 449–457. Coconut Creek (Florida), ISSN 0749-0208. Underwater wireless sensor networks (UWSNs) play an importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of coastal research 2022-03, Vol.38 (2), p.449-457
Hauptverfasser: Dong, Wei, Yang, Qiuling, Huang, Xiangdang, Chen, Yanxia, Sun, Shijie, Li, Deshun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 2
container_start_page 449
container_title Journal of coastal research
container_volume 38
creator Dong, Wei
Yang, Qiuling
Huang, Xiangdang
Chen, Yanxia
Sun, Shijie
Li, Deshun
description Dong, W.; Yang, Q.; Huang, X.; Chen, Y., and Sun, S., 2022. A MAC protocol for underwater sensor networks using parallel transmission variable time slots. Journal of Coastal Research, 38(2), 449–457. Coconut Creek (Florida), ISSN 0749-0208. Underwater wireless sensor networks (UWSNs) play an important role in coastal research and ocean utilization. The disadvantages of the long propagation delay in underwater acoustic communication make the MAC protocol based on time slots unsuitable for UWSNs. Thus, a MAC protocol with a variable time slot is proposed to solve this problem. In the proposed protocol, a parallel transmission node selection algorithm realizes the collision-free transmission of multiple nodes in the same time slot according to the delay information between nodes and the duration of the packet. It determines the length of each time slot at the same time. Then, the cluster head node schedules the sending time of each node according to the parallel transmission node selection algorithm. Compared with the Time Division Multiple Access (TDMA) and prescheduling-based MAC, the simulation results show that the throughput is increased by approximately 47% and 25%, respectively, under the same load. When the load is low, variable time slot-MAC also has better performance related to end-to-end delay.
doi_str_mv 10.2112/JCOASTRES-D-21-00086.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2637214363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48656967</jstor_id><sourcerecordid>48656967</sourcerecordid><originalsourceid>FETCH-LOGICAL-b325t-586f9ae944cf0e0dce1e597682ce5bf16fce7b8bb168affefcb5e6fbc1fd02c43</originalsourceid><addsrcrecordid>eNqNUMtKAzEUDaJgfXyCEnA9Nckkmcyy1Ddqi23dSUjSG5k6nWgypfj3jla6FFcXzuseDkKnlPQZpez8bjgaTKZPl5PsImM0I4Qo2ac7qEeFoJkgudxFPVLwMiOMqH10kNKCECoVL3roZYAfBkM8jqENLtTYh4hnzRzi2rQQ8QSa1CGP0K5DfEt4lqrmFY9NNHUNNZ5G06RllVIVGvxsYmVsDXhaLQFP6tCmI7TnTZ3g-PceotnV5XR4k92Prm-Hg_vM5ky0mVDSlwZKzp0nQOYOKIiykIo5ENZT6R0UVlnblTbeg3dWgPTWUT8nzPH8EJ1tct9j-FhBavUirGLTvdRM5gWjPJf5nyqhuFSlZGWnkhuViyGlCF6_x2pp4qemRH8PrreD64sO0D-Da9oZTzbGRWpD3Lq4kkKWsuh4vuFtFUID_439AvyEj84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584689629</pqid></control><display><type>article</type><title>A MAC Protocol for Underwater Sensor Networks Using Parallel Transmission Variable Time Slots</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Dong, Wei ; Yang, Qiuling ; Huang, Xiangdang ; Chen, Yanxia ; Sun, Shijie ; Li, Deshun</creator><creatorcontrib>Dong, Wei ; Yang, Qiuling ; Huang, Xiangdang ; Chen, Yanxia ; Sun, Shijie ; Li, Deshun</creatorcontrib><description>Dong, W.; Yang, Q.; Huang, X.; Chen, Y., and Sun, S., 2022. A MAC protocol for underwater sensor networks using parallel transmission variable time slots. Journal of Coastal Research, 38(2), 449–457. Coconut Creek (Florida), ISSN 0749-0208. Underwater wireless sensor networks (UWSNs) play an important role in coastal research and ocean utilization. The disadvantages of the long propagation delay in underwater acoustic communication make the MAC protocol based on time slots unsuitable for UWSNs. Thus, a MAC protocol with a variable time slot is proposed to solve this problem. In the proposed protocol, a parallel transmission node selection algorithm realizes the collision-free transmission of multiple nodes in the same time slot according to the delay information between nodes and the duration of the packet. It determines the length of each time slot at the same time. Then, the cluster head node schedules the sending time of each node according to the parallel transmission node selection algorithm. Compared with the Time Division Multiple Access (TDMA) and prescheduling-based MAC, the simulation results show that the throughput is increased by approximately 47% and 25%, respectively, under the same load. When the load is low, variable time slot-MAC also has better performance related to end-to-end delay.</description><identifier>ISSN: 0749-0208</identifier><identifier>EISSN: 1551-5036</identifier><identifier>DOI: 10.2112/JCOASTRES-D-21-00086.1</identifier><language>eng</language><publisher>Fort Lauderdale: Coastal Education and Research Foundation</publisher><subject>Acoustic propagation ; Algorithms ; Bandwidths ; Cluster ; Coastal inlets ; Coastal research ; Coasts ; Code Division Multiple Access ; Collision avoidance ; Collision-free transmission ; Communication ; Data transmission ; Delay ; Energy consumption ; Media Access Control ; Nodes ; Propagation ; Protocol ; Satellite communications ; scheduling transmission ; Sensors ; TECHNICAL COMMUNICATIONS ; Time Division Multiple Access ; Underwater ; Underwater acoustics ; Underwater communication ; Underwater detectors ; Wireless networks ; Wireless sensor networks</subject><ispartof>Journal of coastal research, 2022-03, Vol.38 (2), p.449-457</ispartof><rights>Coastal Education and Research Foundation, Inc. 2022</rights><rights>Copyright Allen Press Inc. Oct 2021</rights><rights>Copyright Allen Press Inc. Mar 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-b325t-586f9ae944cf0e0dce1e597682ce5bf16fce7b8bb168affefcb5e6fbc1fd02c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48656967$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48656967$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,58016,58249</link.rule.ids></links><search><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Yang, Qiuling</creatorcontrib><creatorcontrib>Huang, Xiangdang</creatorcontrib><creatorcontrib>Chen, Yanxia</creatorcontrib><creatorcontrib>Sun, Shijie</creatorcontrib><creatorcontrib>Li, Deshun</creatorcontrib><title>A MAC Protocol for Underwater Sensor Networks Using Parallel Transmission Variable Time Slots</title><title>Journal of coastal research</title><description>Dong, W.; Yang, Q.; Huang, X.; Chen, Y., and Sun, S., 2022. A MAC protocol for underwater sensor networks using parallel transmission variable time slots. Journal of Coastal Research, 38(2), 449–457. Coconut Creek (Florida), ISSN 0749-0208. Underwater wireless sensor networks (UWSNs) play an important role in coastal research and ocean utilization. The disadvantages of the long propagation delay in underwater acoustic communication make the MAC protocol based on time slots unsuitable for UWSNs. Thus, a MAC protocol with a variable time slot is proposed to solve this problem. In the proposed protocol, a parallel transmission node selection algorithm realizes the collision-free transmission of multiple nodes in the same time slot according to the delay information between nodes and the duration of the packet. It determines the length of each time slot at the same time. Then, the cluster head node schedules the sending time of each node according to the parallel transmission node selection algorithm. Compared with the Time Division Multiple Access (TDMA) and prescheduling-based MAC, the simulation results show that the throughput is increased by approximately 47% and 25%, respectively, under the same load. When the load is low, variable time slot-MAC also has better performance related to end-to-end delay.</description><subject>Acoustic propagation</subject><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Cluster</subject><subject>Coastal inlets</subject><subject>Coastal research</subject><subject>Coasts</subject><subject>Code Division Multiple Access</subject><subject>Collision avoidance</subject><subject>Collision-free transmission</subject><subject>Communication</subject><subject>Data transmission</subject><subject>Delay</subject><subject>Energy consumption</subject><subject>Media Access Control</subject><subject>Nodes</subject><subject>Propagation</subject><subject>Protocol</subject><subject>Satellite communications</subject><subject>scheduling transmission</subject><subject>Sensors</subject><subject>TECHNICAL COMMUNICATIONS</subject><subject>Time Division Multiple Access</subject><subject>Underwater</subject><subject>Underwater acoustics</subject><subject>Underwater communication</subject><subject>Underwater detectors</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>0749-0208</issn><issn>1551-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUMtKAzEUDaJgfXyCEnA9Nckkmcyy1Ddqi23dSUjSG5k6nWgypfj3jla6FFcXzuseDkKnlPQZpez8bjgaTKZPl5PsImM0I4Qo2ac7qEeFoJkgudxFPVLwMiOMqH10kNKCECoVL3roZYAfBkM8jqENLtTYh4hnzRzi2rQQ8QSa1CGP0K5DfEt4lqrmFY9NNHUNNZ5G06RllVIVGvxsYmVsDXhaLQFP6tCmI7TnTZ3g-PceotnV5XR4k92Prm-Hg_vM5ky0mVDSlwZKzp0nQOYOKIiykIo5ENZT6R0UVlnblTbeg3dWgPTWUT8nzPH8EJ1tct9j-FhBavUirGLTvdRM5gWjPJf5nyqhuFSlZGWnkhuViyGlCF6_x2pp4qemRH8PrreD64sO0D-Da9oZTzbGRWpD3Lq4kkKWsuh4vuFtFUID_439AvyEj84</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Dong, Wei</creator><creator>Yang, Qiuling</creator><creator>Huang, Xiangdang</creator><creator>Chen, Yanxia</creator><creator>Sun, Shijie</creator><creator>Li, Deshun</creator><general>Coastal Education and Research Foundation</general><general>Allen Press Publishing</general><general>Allen Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TN</scope><scope>7U5</scope><scope>7U9</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20220301</creationdate><title>A MAC Protocol for Underwater Sensor Networks Using Parallel Transmission Variable Time Slots</title><author>Dong, Wei ; Yang, Qiuling ; Huang, Xiangdang ; Chen, Yanxia ; Sun, Shijie ; Li, Deshun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b325t-586f9ae944cf0e0dce1e597682ce5bf16fce7b8bb168affefcb5e6fbc1fd02c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic propagation</topic><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Cluster</topic><topic>Coastal inlets</topic><topic>Coastal research</topic><topic>Coasts</topic><topic>Code Division Multiple Access</topic><topic>Collision avoidance</topic><topic>Collision-free transmission</topic><topic>Communication</topic><topic>Data transmission</topic><topic>Delay</topic><topic>Energy consumption</topic><topic>Media Access Control</topic><topic>Nodes</topic><topic>Propagation</topic><topic>Protocol</topic><topic>Satellite communications</topic><topic>scheduling transmission</topic><topic>Sensors</topic><topic>TECHNICAL COMMUNICATIONS</topic><topic>Time Division Multiple Access</topic><topic>Underwater</topic><topic>Underwater acoustics</topic><topic>Underwater communication</topic><topic>Underwater detectors</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Yang, Qiuling</creatorcontrib><creatorcontrib>Huang, Xiangdang</creatorcontrib><creatorcontrib>Chen, Yanxia</creatorcontrib><creatorcontrib>Sun, Shijie</creatorcontrib><creatorcontrib>Li, Deshun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of coastal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Wei</au><au>Yang, Qiuling</au><au>Huang, Xiangdang</au><au>Chen, Yanxia</au><au>Sun, Shijie</au><au>Li, Deshun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A MAC Protocol for Underwater Sensor Networks Using Parallel Transmission Variable Time Slots</atitle><jtitle>Journal of coastal research</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>449</spage><epage>457</epage><pages>449-457</pages><issn>0749-0208</issn><eissn>1551-5036</eissn><abstract>Dong, W.; Yang, Q.; Huang, X.; Chen, Y., and Sun, S., 2022. A MAC protocol for underwater sensor networks using parallel transmission variable time slots. Journal of Coastal Research, 38(2), 449–457. Coconut Creek (Florida), ISSN 0749-0208. Underwater wireless sensor networks (UWSNs) play an important role in coastal research and ocean utilization. The disadvantages of the long propagation delay in underwater acoustic communication make the MAC protocol based on time slots unsuitable for UWSNs. Thus, a MAC protocol with a variable time slot is proposed to solve this problem. In the proposed protocol, a parallel transmission node selection algorithm realizes the collision-free transmission of multiple nodes in the same time slot according to the delay information between nodes and the duration of the packet. It determines the length of each time slot at the same time. Then, the cluster head node schedules the sending time of each node according to the parallel transmission node selection algorithm. Compared with the Time Division Multiple Access (TDMA) and prescheduling-based MAC, the simulation results show that the throughput is increased by approximately 47% and 25%, respectively, under the same load. When the load is low, variable time slot-MAC also has better performance related to end-to-end delay.</abstract><cop>Fort Lauderdale</cop><pub>Coastal Education and Research Foundation</pub><doi>10.2112/JCOASTRES-D-21-00086.1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-0208
ispartof Journal of coastal research, 2022-03, Vol.38 (2), p.449-457
issn 0749-0208
1551-5036
language eng
recordid cdi_proquest_journals_2637214363
source JSTOR Archive Collection A-Z Listing
subjects Acoustic propagation
Algorithms
Bandwidths
Cluster
Coastal inlets
Coastal research
Coasts
Code Division Multiple Access
Collision avoidance
Collision-free transmission
Communication
Data transmission
Delay
Energy consumption
Media Access Control
Nodes
Propagation
Protocol
Satellite communications
scheduling transmission
Sensors
TECHNICAL COMMUNICATIONS
Time Division Multiple Access
Underwater
Underwater acoustics
Underwater communication
Underwater detectors
Wireless networks
Wireless sensor networks
title A MAC Protocol for Underwater Sensor Networks Using Parallel Transmission Variable Time Slots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20MAC%20Protocol%20for%20Underwater%20Sensor%20Networks%20Using%20Parallel%20Transmission%20Variable%20Time%20Slots&rft.jtitle=Journal%20of%20coastal%20research&rft.au=Dong,%20Wei&rft.date=2022-03-01&rft.volume=38&rft.issue=2&rft.spage=449&rft.epage=457&rft.pages=449-457&rft.issn=0749-0208&rft.eissn=1551-5036&rft_id=info:doi/10.2112/JCOASTRES-D-21-00086.1&rft_dat=%3Cjstor_proqu%3E48656967%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584689629&rft_id=info:pmid/&rft_jstor_id=48656967&rfr_iscdi=true