Grayscale-inversion and rotation invariant image description using local ternary derivative pattern with dominant structure encoding

Local ternary pattern (LTP) is sensitive to inverse grayscale changes and its split encoding limits its descriptive ability. In this paper, we investigate these problems and present an enhanced LTP descriptor called local ternary derivative pattern with dominant structure encoding (DLTDP). Firstly,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2022-04, Vol.191, p.116327, Article 116327
Hauptverfasser: Song, Tiecheng, Han, Yuanjing, Li, Shuang, Zhao, Chuchu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116327
container_title Expert systems with applications
container_volume 191
creator Song, Tiecheng
Han, Yuanjing
Li, Shuang
Zhao, Chuchu
description Local ternary pattern (LTP) is sensitive to inverse grayscale changes and its split encoding limits its descriptive ability. In this paper, we investigate these problems and present an enhanced LTP descriptor called local ternary derivative pattern with dominant structure encoding (DLTDP). Firstly, we propose a local ternary derivative pattern (LTDP) operator which encodes the neighboring relationship in the magnitude response space of Gaussian derivative filters. In LTDP, adaptive ternary quantization is performed on the magnitude responses of Gaussian derivative filters to achieve grayscale-inversion and rotation invariance. An extended non-split ternary encoding scheme is developed to obtain compact yet discriminative LTDP codes. Secondly, to complement the magnitude responses used in LTDP, we leverage a dominant structure measure to additionally encode each pixel in the original filter response space as well as the input image space. Finally, we integrate all the generated codes to construct joint histogram features as the DLTDP descriptor. Extensive experiments on four benchmark databases (i.e., Outex, CUReT, KTH-TIPS and DTD) demonstrate the superiority of our DLTDP descriptor over state-of-the-art LBP and LTP variants for texture classification under (linear or nonlinear) grayscale inversion and image rotation. •We propose a grayscale-inversion and rotation invariant image descriptor.•The neighboring relationship is encoded based on Gaussian derivative filters.•Adaptive ternary quantization and extended non-split ternary encoding are adopted.•The dominant structure encoding is used to enhance the discriminative ability.
doi_str_mv 10.1016/j.eswa.2021.116327
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637166220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417421016274</els_id><sourcerecordid>2637166220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-28ce4c25b41f4d83132f481e1e9f2d7165212bb11229030594fe89978ff41db33</originalsourceid><addsrcrecordid>eNp9kE1r4zAQhsXShU3T_QN7EvTsVCM5lg17KaVfEOilPQtFGncVUis7khNy7w-v3PTc0zAfz8s7L2N_QCxAQHO1WWA62IUUEhYAjZL6B5tBq1XV6E6dsZnolrqqQde_2HlKGyFAC6Fn7P2e7DE5u8UqDHukFOLA7eA5xWzz1JSxpWCHzMObfUXuMTkKu8_dmMLwyrex8DwjDZaOZU9hX9A98p3N05QfQv7HfXwLwySTMo0uj4QcBxd9UbhgP3u7Tfj7q87Zy93t881DtXq6f7y5XlVOyTZXsnVYO7lc19DXvlWgZF-3gIBdL72GZilBrtcAUnZCiWVX99h2nW77vga_VmrOLk-6O4r_R0zZbOJYXG-TkY0qAo2UolzJ05WjmBJhb3ZUXqejAWGmtM3GTGmbKW1zSrtAf08QFv_7gGSSC-U_9IHQZeNj-A7_ABesi2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637166220</pqid></control><display><type>article</type><title>Grayscale-inversion and rotation invariant image description using local ternary derivative pattern with dominant structure encoding</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Song, Tiecheng ; Han, Yuanjing ; Li, Shuang ; Zhao, Chuchu</creator><creatorcontrib>Song, Tiecheng ; Han, Yuanjing ; Li, Shuang ; Zhao, Chuchu</creatorcontrib><description>Local ternary pattern (LTP) is sensitive to inverse grayscale changes and its split encoding limits its descriptive ability. In this paper, we investigate these problems and present an enhanced LTP descriptor called local ternary derivative pattern with dominant structure encoding (DLTDP). Firstly, we propose a local ternary derivative pattern (LTDP) operator which encodes the neighboring relationship in the magnitude response space of Gaussian derivative filters. In LTDP, adaptive ternary quantization is performed on the magnitude responses of Gaussian derivative filters to achieve grayscale-inversion and rotation invariance. An extended non-split ternary encoding scheme is developed to obtain compact yet discriminative LTDP codes. Secondly, to complement the magnitude responses used in LTDP, we leverage a dominant structure measure to additionally encode each pixel in the original filter response space as well as the input image space. Finally, we integrate all the generated codes to construct joint histogram features as the DLTDP descriptor. Extensive experiments on four benchmark databases (i.e., Outex, CUReT, KTH-TIPS and DTD) demonstrate the superiority of our DLTDP descriptor over state-of-the-art LBP and LTP variants for texture classification under (linear or nonlinear) grayscale inversion and image rotation. •We propose a grayscale-inversion and rotation invariant image descriptor.•The neighboring relationship is encoded based on Gaussian derivative filters.•Adaptive ternary quantization and extended non-split ternary encoding are adopted.•The dominant structure encoding is used to enhance the discriminative ability.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.116327</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Gray scale ; Histograms ; Illumination invariance ; Image classification ; Image feature ; Image rotation ; Local binary pattern ; Local ternary pattern ; Rotation invariance ; Texture</subject><ispartof>Expert systems with applications, 2022-04, Vol.191, p.116327, Article 116327</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-28ce4c25b41f4d83132f481e1e9f2d7165212bb11229030594fe89978ff41db33</citedby><cites>FETCH-LOGICAL-c328t-28ce4c25b41f4d83132f481e1e9f2d7165212bb11229030594fe89978ff41db33</cites><orcidid>0000-0003-1264-2812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2021.116327$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Song, Tiecheng</creatorcontrib><creatorcontrib>Han, Yuanjing</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Zhao, Chuchu</creatorcontrib><title>Grayscale-inversion and rotation invariant image description using local ternary derivative pattern with dominant structure encoding</title><title>Expert systems with applications</title><description>Local ternary pattern (LTP) is sensitive to inverse grayscale changes and its split encoding limits its descriptive ability. In this paper, we investigate these problems and present an enhanced LTP descriptor called local ternary derivative pattern with dominant structure encoding (DLTDP). Firstly, we propose a local ternary derivative pattern (LTDP) operator which encodes the neighboring relationship in the magnitude response space of Gaussian derivative filters. In LTDP, adaptive ternary quantization is performed on the magnitude responses of Gaussian derivative filters to achieve grayscale-inversion and rotation invariance. An extended non-split ternary encoding scheme is developed to obtain compact yet discriminative LTDP codes. Secondly, to complement the magnitude responses used in LTDP, we leverage a dominant structure measure to additionally encode each pixel in the original filter response space as well as the input image space. Finally, we integrate all the generated codes to construct joint histogram features as the DLTDP descriptor. Extensive experiments on four benchmark databases (i.e., Outex, CUReT, KTH-TIPS and DTD) demonstrate the superiority of our DLTDP descriptor over state-of-the-art LBP and LTP variants for texture classification under (linear or nonlinear) grayscale inversion and image rotation. •We propose a grayscale-inversion and rotation invariant image descriptor.•The neighboring relationship is encoded based on Gaussian derivative filters.•Adaptive ternary quantization and extended non-split ternary encoding are adopted.•The dominant structure encoding is used to enhance the discriminative ability.</description><subject>Gray scale</subject><subject>Histograms</subject><subject>Illumination invariance</subject><subject>Image classification</subject><subject>Image feature</subject><subject>Image rotation</subject><subject>Local binary pattern</subject><subject>Local ternary pattern</subject><subject>Rotation invariance</subject><subject>Texture</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r4zAQhsXShU3T_QN7EvTsVCM5lg17KaVfEOilPQtFGncVUis7khNy7w-v3PTc0zAfz8s7L2N_QCxAQHO1WWA62IUUEhYAjZL6B5tBq1XV6E6dsZnolrqqQde_2HlKGyFAC6Fn7P2e7DE5u8UqDHukFOLA7eA5xWzz1JSxpWCHzMObfUXuMTkKu8_dmMLwyrex8DwjDZaOZU9hX9A98p3N05QfQv7HfXwLwySTMo0uj4QcBxd9UbhgP3u7Tfj7q87Zy93t881DtXq6f7y5XlVOyTZXsnVYO7lc19DXvlWgZF-3gIBdL72GZilBrtcAUnZCiWVX99h2nW77vga_VmrOLk-6O4r_R0zZbOJYXG-TkY0qAo2UolzJ05WjmBJhb3ZUXqejAWGmtM3GTGmbKW1zSrtAf08QFv_7gGSSC-U_9IHQZeNj-A7_ABesi2g</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Song, Tiecheng</creator><creator>Han, Yuanjing</creator><creator>Li, Shuang</creator><creator>Zhao, Chuchu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1264-2812</orcidid></search><sort><creationdate>20220401</creationdate><title>Grayscale-inversion and rotation invariant image description using local ternary derivative pattern with dominant structure encoding</title><author>Song, Tiecheng ; Han, Yuanjing ; Li, Shuang ; Zhao, Chuchu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-28ce4c25b41f4d83132f481e1e9f2d7165212bb11229030594fe89978ff41db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Gray scale</topic><topic>Histograms</topic><topic>Illumination invariance</topic><topic>Image classification</topic><topic>Image feature</topic><topic>Image rotation</topic><topic>Local binary pattern</topic><topic>Local ternary pattern</topic><topic>Rotation invariance</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Tiecheng</creatorcontrib><creatorcontrib>Han, Yuanjing</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Zhao, Chuchu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Tiecheng</au><au>Han, Yuanjing</au><au>Li, Shuang</au><au>Zhao, Chuchu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grayscale-inversion and rotation invariant image description using local ternary derivative pattern with dominant structure encoding</atitle><jtitle>Expert systems with applications</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>191</volume><spage>116327</spage><pages>116327-</pages><artnum>116327</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Local ternary pattern (LTP) is sensitive to inverse grayscale changes and its split encoding limits its descriptive ability. In this paper, we investigate these problems and present an enhanced LTP descriptor called local ternary derivative pattern with dominant structure encoding (DLTDP). Firstly, we propose a local ternary derivative pattern (LTDP) operator which encodes the neighboring relationship in the magnitude response space of Gaussian derivative filters. In LTDP, adaptive ternary quantization is performed on the magnitude responses of Gaussian derivative filters to achieve grayscale-inversion and rotation invariance. An extended non-split ternary encoding scheme is developed to obtain compact yet discriminative LTDP codes. Secondly, to complement the magnitude responses used in LTDP, we leverage a dominant structure measure to additionally encode each pixel in the original filter response space as well as the input image space. Finally, we integrate all the generated codes to construct joint histogram features as the DLTDP descriptor. Extensive experiments on four benchmark databases (i.e., Outex, CUReT, KTH-TIPS and DTD) demonstrate the superiority of our DLTDP descriptor over state-of-the-art LBP and LTP variants for texture classification under (linear or nonlinear) grayscale inversion and image rotation. •We propose a grayscale-inversion and rotation invariant image descriptor.•The neighboring relationship is encoded based on Gaussian derivative filters.•Adaptive ternary quantization and extended non-split ternary encoding are adopted.•The dominant structure encoding is used to enhance the discriminative ability.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.116327</doi><orcidid>https://orcid.org/0000-0003-1264-2812</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2022-04, Vol.191, p.116327, Article 116327
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2637166220
source Elsevier ScienceDirect Journals Complete
subjects Gray scale
Histograms
Illumination invariance
Image classification
Image feature
Image rotation
Local binary pattern
Local ternary pattern
Rotation invariance
Texture
title Grayscale-inversion and rotation invariant image description using local ternary derivative pattern with dominant structure encoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grayscale-inversion%20and%20rotation%20invariant%20image%20description%20using%20local%20ternary%20derivative%20pattern%20with%20dominant%20structure%20encoding&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Song,%20Tiecheng&rft.date=2022-04-01&rft.volume=191&rft.spage=116327&rft.pages=116327-&rft.artnum=116327&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.116327&rft_dat=%3Cproquest_cross%3E2637166220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637166220&rft_id=info:pmid/&rft_els_id=S0957417421016274&rfr_iscdi=true