Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation

In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures 2022-02, Vol.253, p.113674, Article 113674
Hauptverfasser: Pinho, Flávio Augusto Xavier Carneiro, Del Prado, Zenón José Guzmán Nuñez, Silva, Frederico Martins Alves da
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113674
container_title Engineering structures
container_volume 253
creator Pinho, Flávio Augusto Xavier Carneiro
Del Prado, Zenón José Guzmán Nuñez
Silva, Frederico Martins Alves da
description In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the non-orthogonal tensor theory is applied and, to describe the strain–displacement relations of the shells, two approximations of Koiter’s theory are employed. To obtain the set of nonlinear equilibrium equations, a large-dimensional model is obtained by expanding the field displacements using Fourier series and a reduced order model is generated by using the Karhunen–Loève method. The proper orthogonal modes (POMs) of Karhunen–Loève method are acquired from a numerical model performed via Finite Element Analysis (FEA). The nonlinear static paths are compared with literature and with results obtained from FEA. The tensor formulation applied in this work has proven to be efficient when dealing with both shallow and non-shallow shells which are described by non-orthogonal curvilinear coordinates on nonlinear regime. •Koiter theory is applied to determine the nonlinear static response of thin shells.•Shallow and non-shallow shells were studied using tensor formulation.•Low-dimensional shell models using Proper Orthogonal Decomposition.•Semi-analytical solution is compared with FEM showing a good agreement.
doi_str_mv 10.1016/j.engstruct.2021.113674
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637165745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029621017612</els_id><sourcerecordid>2637165745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-3e2c04b7d37588797f06eb2a2ed0ef5e06f4a503ccfe130f0b45899e6c4fbcd23</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEuXxG7DEOWVtJ3F6RBUvqYILHDhZrrNuXaU2eBMQ_55UBa6cVqOdGWk-xi4ETAWI-mozxbiiPg-un0qQYiqEqnV5wCai0arQSqpDNgFRigLkrD5mJ0QbAJBNAxP2-phiFyLazKm3fXDcRtt9USCePO_XIXJa265Ln-Oj5THF4lfTGruO-EAhrniPkVLmPuXt0I09KZ6xI287wvOfe8pebm-e5_fF4unuYX69KJysmr5QKB2US90qXTWNnmkPNS6lldgC-gqh9qWtQDnnUSjwsCyrZjbD2pV-6VqpTtnlvvctp_cBqTebNORxBBlZKy3qSpfV6NJ7l8uJKKM3bzlsbf4yAsyOo9mYP45mx9HsOY7J630SxxEfAbMhFzA6bEPG0dum8G_HN9Sigjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637165745</pqid></control><display><type>article</type><title>Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pinho, Flávio Augusto Xavier Carneiro ; Del Prado, Zenón José Guzmán Nuñez ; Silva, Frederico Martins Alves da</creator><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro ; Del Prado, Zenón José Guzmán Nuñez ; Silva, Frederico Martins Alves da</creatorcontrib><description>In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the non-orthogonal tensor theory is applied and, to describe the strain–displacement relations of the shells, two approximations of Koiter’s theory are employed. To obtain the set of nonlinear equilibrium equations, a large-dimensional model is obtained by expanding the field displacements using Fourier series and a reduced order model is generated by using the Karhunen–Loève method. The proper orthogonal modes (POMs) of Karhunen–Loève method are acquired from a numerical model performed via Finite Element Analysis (FEA). The nonlinear static paths are compared with literature and with results obtained from FEA. The tensor formulation applied in this work has proven to be efficient when dealing with both shallow and non-shallow shells which are described by non-orthogonal curvilinear coordinates on nonlinear regime. •Koiter theory is applied to determine the nonlinear static response of thin shells.•Shallow and non-shallow shells were studied using tensor formulation.•Low-dimensional shell models using Proper Orthogonal Decomposition.•Semi-analytical solution is compared with FEM showing a good agreement.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2021.113674</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Equilibrium equations ; Finite element method ; Fourier series ; Karhunen–Loève method ; Koiter theory ; Mathematical analysis ; Mathematical models ; Non-orthogonal curvilinear coordinates ; Numerical models ; Reduced order models ; Shallow shells ; Shells ; Spherical coordinates ; Tensor formulation ; Tensors ; Thin shell</subject><ispartof>Engineering structures, 2022-02, Vol.253, p.113674, Article 113674</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-3e2c04b7d37588797f06eb2a2ed0ef5e06f4a503ccfe130f0b45899e6c4fbcd23</citedby><cites>FETCH-LOGICAL-c258t-3e2c04b7d37588797f06eb2a2ed0ef5e06f4a503ccfe130f0b45899e6c4fbcd23</cites><orcidid>0000-0003-0692-8822 ; 0000-0003-3306-3545 ; 0000-0002-5034-7438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141029621017612$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro</creatorcontrib><creatorcontrib>Del Prado, Zenón José Guzmán Nuñez</creatorcontrib><creatorcontrib>Silva, Frederico Martins Alves da</creatorcontrib><title>Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation</title><title>Engineering structures</title><description>In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the non-orthogonal tensor theory is applied and, to describe the strain–displacement relations of the shells, two approximations of Koiter’s theory are employed. To obtain the set of nonlinear equilibrium equations, a large-dimensional model is obtained by expanding the field displacements using Fourier series and a reduced order model is generated by using the Karhunen–Loève method. The proper orthogonal modes (POMs) of Karhunen–Loève method are acquired from a numerical model performed via Finite Element Analysis (FEA). The nonlinear static paths are compared with literature and with results obtained from FEA. The tensor formulation applied in this work has proven to be efficient when dealing with both shallow and non-shallow shells which are described by non-orthogonal curvilinear coordinates on nonlinear regime. •Koiter theory is applied to determine the nonlinear static response of thin shells.•Shallow and non-shallow shells were studied using tensor formulation.•Low-dimensional shell models using Proper Orthogonal Decomposition.•Semi-analytical solution is compared with FEM showing a good agreement.</description><subject>Equilibrium equations</subject><subject>Finite element method</subject><subject>Fourier series</subject><subject>Karhunen–Loève method</subject><subject>Koiter theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-orthogonal curvilinear coordinates</subject><subject>Numerical models</subject><subject>Reduced order models</subject><subject>Shallow shells</subject><subject>Shells</subject><subject>Spherical coordinates</subject><subject>Tensor formulation</subject><subject>Tensors</subject><subject>Thin shell</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEuXxG7DEOWVtJ3F6RBUvqYILHDhZrrNuXaU2eBMQ_55UBa6cVqOdGWk-xi4ETAWI-mozxbiiPg-un0qQYiqEqnV5wCai0arQSqpDNgFRigLkrD5mJ0QbAJBNAxP2-phiFyLazKm3fXDcRtt9USCePO_XIXJa265Ln-Oj5THF4lfTGruO-EAhrniPkVLmPuXt0I09KZ6xI287wvOfe8pebm-e5_fF4unuYX69KJysmr5QKB2US90qXTWNnmkPNS6lldgC-gqh9qWtQDnnUSjwsCyrZjbD2pV-6VqpTtnlvvctp_cBqTebNORxBBlZKy3qSpfV6NJ7l8uJKKM3bzlsbf4yAsyOo9mYP45mx9HsOY7J630SxxEfAbMhFzA6bEPG0dum8G_HN9Sigjs</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Pinho, Flávio Augusto Xavier Carneiro</creator><creator>Del Prado, Zenón José Guzmán Nuñez</creator><creator>Silva, Frederico Martins Alves da</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0692-8822</orcidid><orcidid>https://orcid.org/0000-0003-3306-3545</orcidid><orcidid>https://orcid.org/0000-0002-5034-7438</orcidid></search><sort><creationdate>20220215</creationdate><title>Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation</title><author>Pinho, Flávio Augusto Xavier Carneiro ; Del Prado, Zenón José Guzmán Nuñez ; Silva, Frederico Martins Alves da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-3e2c04b7d37588797f06eb2a2ed0ef5e06f4a503ccfe130f0b45899e6c4fbcd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Equilibrium equations</topic><topic>Finite element method</topic><topic>Fourier series</topic><topic>Karhunen–Loève method</topic><topic>Koiter theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-orthogonal curvilinear coordinates</topic><topic>Numerical models</topic><topic>Reduced order models</topic><topic>Shallow shells</topic><topic>Shells</topic><topic>Spherical coordinates</topic><topic>Tensor formulation</topic><topic>Tensors</topic><topic>Thin shell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro</creatorcontrib><creatorcontrib>Del Prado, Zenón José Guzmán Nuñez</creatorcontrib><creatorcontrib>Silva, Frederico Martins Alves da</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinho, Flávio Augusto Xavier Carneiro</au><au>Del Prado, Zenón José Guzmán Nuñez</au><au>Silva, Frederico Martins Alves da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation</atitle><jtitle>Engineering structures</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>253</volume><spage>113674</spage><pages>113674-</pages><artnum>113674</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the non-orthogonal tensor theory is applied and, to describe the strain–displacement relations of the shells, two approximations of Koiter’s theory are employed. To obtain the set of nonlinear equilibrium equations, a large-dimensional model is obtained by expanding the field displacements using Fourier series and a reduced order model is generated by using the Karhunen–Loève method. The proper orthogonal modes (POMs) of Karhunen–Loève method are acquired from a numerical model performed via Finite Element Analysis (FEA). The nonlinear static paths are compared with literature and with results obtained from FEA. The tensor formulation applied in this work has proven to be efficient when dealing with both shallow and non-shallow shells which are described by non-orthogonal curvilinear coordinates on nonlinear regime. •Koiter theory is applied to determine the nonlinear static response of thin shells.•Shallow and non-shallow shells were studied using tensor formulation.•Low-dimensional shell models using Proper Orthogonal Decomposition.•Semi-analytical solution is compared with FEM showing a good agreement.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2021.113674</doi><orcidid>https://orcid.org/0000-0003-0692-8822</orcidid><orcidid>https://orcid.org/0000-0003-3306-3545</orcidid><orcidid>https://orcid.org/0000-0002-5034-7438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2022-02, Vol.253, p.113674, Article 113674
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_journals_2637165745
source Elsevier ScienceDirect Journals Complete
subjects Equilibrium equations
Finite element method
Fourier series
Karhunen–Loève method
Koiter theory
Mathematical analysis
Mathematical models
Non-orthogonal curvilinear coordinates
Numerical models
Reduced order models
Shallow shells
Shells
Spherical coordinates
Tensor formulation
Tensors
Thin shell
title Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20static%20analysis%20of%20thin%20shallow%20and%20non-shallow%20shells%20using%20tensor%20formulation&rft.jtitle=Engineering%20structures&rft.au=Pinho,%20Fl%C3%A1vio%20Augusto%20Xavier%20Carneiro&rft.date=2022-02-15&rft.volume=253&rft.spage=113674&rft.pages=113674-&rft.artnum=113674&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2021.113674&rft_dat=%3Cproquest_cross%3E2637165745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637165745&rft_id=info:pmid/&rft_els_id=S0141029621017612&rfr_iscdi=true