Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation
In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the...
Gespeichert in:
Veröffentlicht in: | Engineering structures 2022-02, Vol.253, p.113674, Article 113674 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113674 |
container_title | Engineering structures |
container_volume | 253 |
creator | Pinho, Flávio Augusto Xavier Carneiro Del Prado, Zenón José Guzmán Nuñez Silva, Frederico Martins Alves da |
description | In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the non-orthogonal tensor theory is applied and, to describe the strain–displacement relations of the shells, two approximations of Koiter’s theory are employed. To obtain the set of nonlinear equilibrium equations, a large-dimensional model is obtained by expanding the field displacements using Fourier series and a reduced order model is generated by using the Karhunen–Loève method. The proper orthogonal modes (POMs) of Karhunen–Loève method are acquired from a numerical model performed via Finite Element Analysis (FEA). The nonlinear static paths are compared with literature and with results obtained from FEA. The tensor formulation applied in this work has proven to be efficient when dealing with both shallow and non-shallow shells which are described by non-orthogonal curvilinear coordinates on nonlinear regime.
•Koiter theory is applied to determine the nonlinear static response of thin shells.•Shallow and non-shallow shells were studied using tensor formulation.•Low-dimensional shell models using Proper Orthogonal Decomposition.•Semi-analytical solution is compared with FEM showing a good agreement. |
doi_str_mv | 10.1016/j.engstruct.2021.113674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637165745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029621017612</els_id><sourcerecordid>2637165745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-3e2c04b7d37588797f06eb2a2ed0ef5e06f4a503ccfe130f0b45899e6c4fbcd23</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEuXxG7DEOWVtJ3F6RBUvqYILHDhZrrNuXaU2eBMQ_55UBa6cVqOdGWk-xi4ETAWI-mozxbiiPg-un0qQYiqEqnV5wCai0arQSqpDNgFRigLkrD5mJ0QbAJBNAxP2-phiFyLazKm3fXDcRtt9USCePO_XIXJa265Ln-Oj5THF4lfTGruO-EAhrniPkVLmPuXt0I09KZ6xI287wvOfe8pebm-e5_fF4unuYX69KJysmr5QKB2US90qXTWNnmkPNS6lldgC-gqh9qWtQDnnUSjwsCyrZjbD2pV-6VqpTtnlvvctp_cBqTebNORxBBlZKy3qSpfV6NJ7l8uJKKM3bzlsbf4yAsyOo9mYP45mx9HsOY7J630SxxEfAbMhFzA6bEPG0dum8G_HN9Sigjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637165745</pqid></control><display><type>article</type><title>Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pinho, Flávio Augusto Xavier Carneiro ; Del Prado, Zenón José Guzmán Nuñez ; Silva, Frederico Martins Alves da</creator><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro ; Del Prado, Zenón José Guzmán Nuñez ; Silva, Frederico Martins Alves da</creatorcontrib><description>In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the non-orthogonal tensor theory is applied and, to describe the strain–displacement relations of the shells, two approximations of Koiter’s theory are employed. To obtain the set of nonlinear equilibrium equations, a large-dimensional model is obtained by expanding the field displacements using Fourier series and a reduced order model is generated by using the Karhunen–Loève method. The proper orthogonal modes (POMs) of Karhunen–Loève method are acquired from a numerical model performed via Finite Element Analysis (FEA). The nonlinear static paths are compared with literature and with results obtained from FEA. The tensor formulation applied in this work has proven to be efficient when dealing with both shallow and non-shallow shells which are described by non-orthogonal curvilinear coordinates on nonlinear regime.
•Koiter theory is applied to determine the nonlinear static response of thin shells.•Shallow and non-shallow shells were studied using tensor formulation.•Low-dimensional shell models using Proper Orthogonal Decomposition.•Semi-analytical solution is compared with FEM showing a good agreement.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2021.113674</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Equilibrium equations ; Finite element method ; Fourier series ; Karhunen–Loève method ; Koiter theory ; Mathematical analysis ; Mathematical models ; Non-orthogonal curvilinear coordinates ; Numerical models ; Reduced order models ; Shallow shells ; Shells ; Spherical coordinates ; Tensor formulation ; Tensors ; Thin shell</subject><ispartof>Engineering structures, 2022-02, Vol.253, p.113674, Article 113674</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-3e2c04b7d37588797f06eb2a2ed0ef5e06f4a503ccfe130f0b45899e6c4fbcd23</citedby><cites>FETCH-LOGICAL-c258t-3e2c04b7d37588797f06eb2a2ed0ef5e06f4a503ccfe130f0b45899e6c4fbcd23</cites><orcidid>0000-0003-0692-8822 ; 0000-0003-3306-3545 ; 0000-0002-5034-7438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141029621017612$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro</creatorcontrib><creatorcontrib>Del Prado, Zenón José Guzmán Nuñez</creatorcontrib><creatorcontrib>Silva, Frederico Martins Alves da</creatorcontrib><title>Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation</title><title>Engineering structures</title><description>In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the non-orthogonal tensor theory is applied and, to describe the strain–displacement relations of the shells, two approximations of Koiter’s theory are employed. To obtain the set of nonlinear equilibrium equations, a large-dimensional model is obtained by expanding the field displacements using Fourier series and a reduced order model is generated by using the Karhunen–Loève method. The proper orthogonal modes (POMs) of Karhunen–Loève method are acquired from a numerical model performed via Finite Element Analysis (FEA). The nonlinear static paths are compared with literature and with results obtained from FEA. The tensor formulation applied in this work has proven to be efficient when dealing with both shallow and non-shallow shells which are described by non-orthogonal curvilinear coordinates on nonlinear regime.
•Koiter theory is applied to determine the nonlinear static response of thin shells.•Shallow and non-shallow shells were studied using tensor formulation.•Low-dimensional shell models using Proper Orthogonal Decomposition.•Semi-analytical solution is compared with FEM showing a good agreement.</description><subject>Equilibrium equations</subject><subject>Finite element method</subject><subject>Fourier series</subject><subject>Karhunen–Loève method</subject><subject>Koiter theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-orthogonal curvilinear coordinates</subject><subject>Numerical models</subject><subject>Reduced order models</subject><subject>Shallow shells</subject><subject>Shells</subject><subject>Spherical coordinates</subject><subject>Tensor formulation</subject><subject>Tensors</subject><subject>Thin shell</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEuXxG7DEOWVtJ3F6RBUvqYILHDhZrrNuXaU2eBMQ_55UBa6cVqOdGWk-xi4ETAWI-mozxbiiPg-un0qQYiqEqnV5wCai0arQSqpDNgFRigLkrD5mJ0QbAJBNAxP2-phiFyLazKm3fXDcRtt9USCePO_XIXJa265Ln-Oj5THF4lfTGruO-EAhrniPkVLmPuXt0I09KZ6xI287wvOfe8pebm-e5_fF4unuYX69KJysmr5QKB2US90qXTWNnmkPNS6lldgC-gqh9qWtQDnnUSjwsCyrZjbD2pV-6VqpTtnlvvctp_cBqTebNORxBBlZKy3qSpfV6NJ7l8uJKKM3bzlsbf4yAsyOo9mYP45mx9HsOY7J630SxxEfAbMhFzA6bEPG0dum8G_HN9Sigjs</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Pinho, Flávio Augusto Xavier Carneiro</creator><creator>Del Prado, Zenón José Guzmán Nuñez</creator><creator>Silva, Frederico Martins Alves da</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0692-8822</orcidid><orcidid>https://orcid.org/0000-0003-3306-3545</orcidid><orcidid>https://orcid.org/0000-0002-5034-7438</orcidid></search><sort><creationdate>20220215</creationdate><title>Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation</title><author>Pinho, Flávio Augusto Xavier Carneiro ; Del Prado, Zenón José Guzmán Nuñez ; Silva, Frederico Martins Alves da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-3e2c04b7d37588797f06eb2a2ed0ef5e06f4a503ccfe130f0b45899e6c4fbcd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Equilibrium equations</topic><topic>Finite element method</topic><topic>Fourier series</topic><topic>Karhunen–Loève method</topic><topic>Koiter theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-orthogonal curvilinear coordinates</topic><topic>Numerical models</topic><topic>Reduced order models</topic><topic>Shallow shells</topic><topic>Shells</topic><topic>Spherical coordinates</topic><topic>Tensor formulation</topic><topic>Tensors</topic><topic>Thin shell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro</creatorcontrib><creatorcontrib>Del Prado, Zenón José Guzmán Nuñez</creatorcontrib><creatorcontrib>Silva, Frederico Martins Alves da</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinho, Flávio Augusto Xavier Carneiro</au><au>Del Prado, Zenón José Guzmán Nuñez</au><au>Silva, Frederico Martins Alves da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation</atitle><jtitle>Engineering structures</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>253</volume><spage>113674</spage><pages>113674-</pages><artnum>113674</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>In this study, a large-amplitude nonlinear static analysis of thin shallow and non-shallow shells is performed. Simply supported linear homogeneous elastic spherical panels and parabolic conoidal shells subjected to concentrated and distributed external loads are considered. To model the shells, the non-orthogonal tensor theory is applied and, to describe the strain–displacement relations of the shells, two approximations of Koiter’s theory are employed. To obtain the set of nonlinear equilibrium equations, a large-dimensional model is obtained by expanding the field displacements using Fourier series and a reduced order model is generated by using the Karhunen–Loève method. The proper orthogonal modes (POMs) of Karhunen–Loève method are acquired from a numerical model performed via Finite Element Analysis (FEA). The nonlinear static paths are compared with literature and with results obtained from FEA. The tensor formulation applied in this work has proven to be efficient when dealing with both shallow and non-shallow shells which are described by non-orthogonal curvilinear coordinates on nonlinear regime.
•Koiter theory is applied to determine the nonlinear static response of thin shells.•Shallow and non-shallow shells were studied using tensor formulation.•Low-dimensional shell models using Proper Orthogonal Decomposition.•Semi-analytical solution is compared with FEM showing a good agreement.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2021.113674</doi><orcidid>https://orcid.org/0000-0003-0692-8822</orcidid><orcidid>https://orcid.org/0000-0003-3306-3545</orcidid><orcidid>https://orcid.org/0000-0002-5034-7438</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0296 |
ispartof | Engineering structures, 2022-02, Vol.253, p.113674, Article 113674 |
issn | 0141-0296 1873-7323 |
language | eng |
recordid | cdi_proquest_journals_2637165745 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Equilibrium equations Finite element method Fourier series Karhunen–Loève method Koiter theory Mathematical analysis Mathematical models Non-orthogonal curvilinear coordinates Numerical models Reduced order models Shallow shells Shells Spherical coordinates Tensor formulation Tensors Thin shell |
title | Nonlinear static analysis of thin shallow and non-shallow shells using tensor formulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20static%20analysis%20of%20thin%20shallow%20and%20non-shallow%20shells%20using%20tensor%20formulation&rft.jtitle=Engineering%20structures&rft.au=Pinho,%20Fl%C3%A1vio%20Augusto%20Xavier%20Carneiro&rft.date=2022-02-15&rft.volume=253&rft.spage=113674&rft.pages=113674-&rft.artnum=113674&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2021.113674&rft_dat=%3Cproquest_cross%3E2637165745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637165745&rft_id=info:pmid/&rft_els_id=S0141029621017612&rfr_iscdi=true |