Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils
•Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2022-03, Vol.312, p.122939, Article 122939 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122939 |
container_title | Fuel (Guildford) |
container_volume | 312 |
creator | Chacón-Patiño, Martha L. Nelson, Jenny Rogel, Estrella Hench, Kyle Poirier, Laura Lopez-Linares, Francisco Ovalles, Cesar |
description | •Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content than heptol and TTM.
Understanding vanadium and nickel distributions in asphaltene fractions have significant commercial importance throughout the petroleum value chain and the potential use of heavy feedstocks as a precursor of carbon-based materials, such as carbon fibers. This work extends our previous studies and aims to characterize volatile and non-volatile vanadium and nickel distributions by selective separation of n-heptane asphaltenes obtained from two Venezuelan heavy crude oils and the NIST Standard Reference Material (SRM) 8505. Asphaltenes were separated by extrography, i.e., adsorption on SiO2 and subsequent extraction with acetone, heptol (n-heptane/toluene 1:1 vol), and a mixture of toluene, THF, and methanol (TTM). The results suggest that their solubility and aggregation strongly correlate to a higher hydrogen deficiency and increased heteroatom levels. The qualitative analysis of the spent silica gel, containing irreversibly-adsorbed asphaltenes, by Light-Induced Breakdown Spectroscopy, suggests that regardless of the solvent power used during the extraction, strong chemisorbed Ni and V species remain on the SiO2, presumable associated with porphyrin molecules present on such feeds. High-Temperature Gas Chromatography coupled with Inductively Coupled Plasma Mass Spectrometry (HTGC-ICP-MS) showed that vanadium and nickel compounds have boiling points starting at 1050 °F. Quantification of the V-content below 1300 °F for the Venezuelan crude 1 indicated that the acetone fraction contains a large amount of distillable vanadium (∼62 %wt.). Interestingly, whole/unfractionated asphaltenes revealed only 47% of distillable vanadium, which suggests that the extrography method can obtain asphaltene fractions with “improved” properties (weaker aggregation, increased solubility, and lower boiling points). The characterization by atmospheric pressure photoionization Fourier Transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) and HTGC-ICP-MS revealed that the acetone asphaltene fractions have a higher relative abundance of vanadyl porphyrins (with and without sulfur) than heptol and TTM. |
doi_str_mv | 10.1016/j.fuel.2021.122939 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637161217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121028003</els_id><sourcerecordid>2637161217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-b01935269b4c653a88d6aad8d5077ff65c415a2e698dcd31d9ad22ddbf6d4a233</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU8Bz635aNMWvMjiFyx4Ua9hmkzZ1G5ak3Zh_71d6tnTXN6bGR4ht5ylnHF136bNhF0qmOApF6KS1RlZ8bKQScFzeU5WbKYSIRW_JFcxtoyxosyzFam_wIN1056Ct9Q7840dtS6OwdXT6HofqfM0YodmdAdMIg4QYMSZTXY4jOCRQhx20I3oMdK-oTuEw5GaMFmkveviNblooIt48zfX5PP56WPzmmzfX942j9vESFGOSc14JXOhqjozKpdQllYB2NLmrCiaRuUm4zkIVFVpjZXcVmCFsLZulM1ASLkmd8veIfQ_E8ZRt_0U_HxSCyULrrjgxUyJhTKhjzFgo4fg9hCOmjN9aqlbfWqpTy310nKWHhYJ5_8PDoOOxqE3aF2Yw2jbu__0X7dOfoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637161217</pqid></control><display><type>article</type><title>Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Chacón-Patiño, Martha L. ; Nelson, Jenny ; Rogel, Estrella ; Hench, Kyle ; Poirier, Laura ; Lopez-Linares, Francisco ; Ovalles, Cesar</creator><creatorcontrib>Chacón-Patiño, Martha L. ; Nelson, Jenny ; Rogel, Estrella ; Hench, Kyle ; Poirier, Laura ; Lopez-Linares, Francisco ; Ovalles, Cesar</creatorcontrib><description>•Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content than heptol and TTM.
Understanding vanadium and nickel distributions in asphaltene fractions have significant commercial importance throughout the petroleum value chain and the potential use of heavy feedstocks as a precursor of carbon-based materials, such as carbon fibers. This work extends our previous studies and aims to characterize volatile and non-volatile vanadium and nickel distributions by selective separation of n-heptane asphaltenes obtained from two Venezuelan heavy crude oils and the NIST Standard Reference Material (SRM) 8505. Asphaltenes were separated by extrography, i.e., adsorption on SiO2 and subsequent extraction with acetone, heptol (n-heptane/toluene 1:1 vol), and a mixture of toluene, THF, and methanol (TTM). The results suggest that their solubility and aggregation strongly correlate to a higher hydrogen deficiency and increased heteroatom levels. The qualitative analysis of the spent silica gel, containing irreversibly-adsorbed asphaltenes, by Light-Induced Breakdown Spectroscopy, suggests that regardless of the solvent power used during the extraction, strong chemisorbed Ni and V species remain on the SiO2, presumable associated with porphyrin molecules present on such feeds. High-Temperature Gas Chromatography coupled with Inductively Coupled Plasma Mass Spectrometry (HTGC-ICP-MS) showed that vanadium and nickel compounds have boiling points starting at 1050 °F. Quantification of the V-content below 1300 °F for the Venezuelan crude 1 indicated that the acetone fraction contains a large amount of distillable vanadium (∼62 %wt.). Interestingly, whole/unfractionated asphaltenes revealed only 47% of distillable vanadium, which suggests that the extrography method can obtain asphaltene fractions with “improved” properties (weaker aggregation, increased solubility, and lower boiling points). The characterization by atmospheric pressure photoionization Fourier Transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) and HTGC-ICP-MS revealed that the acetone asphaltene fractions have a higher relative abundance of vanadyl porphyrins (with and without sulfur) than heptol and TTM.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.122939</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetone ; Agglomeration ; Asphaltenes ; Boiling ; Boiling points ; Carbon ; Carbon fibers ; Crude oil ; Cyclotron resonance ; Emission spectroscopy ; Fourier analysis ; Fourier transforms ; Gas chromatography ; Heavy crude oils ; Heavy petroleum ; Heptanes ; High temperature gases ; Inductively coupled plasma mass spectrometry ; Ions ; Light effects ; Mass spectrometry ; Mass spectroscopy ; Nickel ; Nickel compounds ; Photoionization ; Porphyrins ; Qualitative analysis ; Relative abundance ; Scientific imaging ; Selective-separation ; Silica ; Silica gel ; Silicon dioxide ; Solubility ; Sulfur ; Toluene ; Vanadium ; Vanadium and nickel distributions ; Vanadium compounds ; Vanadyl porphyrins</subject><ispartof>Fuel (Guildford), 2022-03, Vol.312, p.122939, Article 122939</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-b01935269b4c653a88d6aad8d5077ff65c415a2e698dcd31d9ad22ddbf6d4a233</citedby><cites>FETCH-LOGICAL-c328t-b01935269b4c653a88d6aad8d5077ff65c415a2e698dcd31d9ad22ddbf6d4a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.122939$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Chacón-Patiño, Martha L.</creatorcontrib><creatorcontrib>Nelson, Jenny</creatorcontrib><creatorcontrib>Rogel, Estrella</creatorcontrib><creatorcontrib>Hench, Kyle</creatorcontrib><creatorcontrib>Poirier, Laura</creatorcontrib><creatorcontrib>Lopez-Linares, Francisco</creatorcontrib><creatorcontrib>Ovalles, Cesar</creatorcontrib><title>Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils</title><title>Fuel (Guildford)</title><description>•Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content than heptol and TTM.
Understanding vanadium and nickel distributions in asphaltene fractions have significant commercial importance throughout the petroleum value chain and the potential use of heavy feedstocks as a precursor of carbon-based materials, such as carbon fibers. This work extends our previous studies and aims to characterize volatile and non-volatile vanadium and nickel distributions by selective separation of n-heptane asphaltenes obtained from two Venezuelan heavy crude oils and the NIST Standard Reference Material (SRM) 8505. Asphaltenes were separated by extrography, i.e., adsorption on SiO2 and subsequent extraction with acetone, heptol (n-heptane/toluene 1:1 vol), and a mixture of toluene, THF, and methanol (TTM). The results suggest that their solubility and aggregation strongly correlate to a higher hydrogen deficiency and increased heteroatom levels. The qualitative analysis of the spent silica gel, containing irreversibly-adsorbed asphaltenes, by Light-Induced Breakdown Spectroscopy, suggests that regardless of the solvent power used during the extraction, strong chemisorbed Ni and V species remain on the SiO2, presumable associated with porphyrin molecules present on such feeds. High-Temperature Gas Chromatography coupled with Inductively Coupled Plasma Mass Spectrometry (HTGC-ICP-MS) showed that vanadium and nickel compounds have boiling points starting at 1050 °F. Quantification of the V-content below 1300 °F for the Venezuelan crude 1 indicated that the acetone fraction contains a large amount of distillable vanadium (∼62 %wt.). Interestingly, whole/unfractionated asphaltenes revealed only 47% of distillable vanadium, which suggests that the extrography method can obtain asphaltene fractions with “improved” properties (weaker aggregation, increased solubility, and lower boiling points). The characterization by atmospheric pressure photoionization Fourier Transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) and HTGC-ICP-MS revealed that the acetone asphaltene fractions have a higher relative abundance of vanadyl porphyrins (with and without sulfur) than heptol and TTM.</description><subject>Acetone</subject><subject>Agglomeration</subject><subject>Asphaltenes</subject><subject>Boiling</subject><subject>Boiling points</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Crude oil</subject><subject>Cyclotron resonance</subject><subject>Emission spectroscopy</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>Heavy crude oils</subject><subject>Heavy petroleum</subject><subject>Heptanes</subject><subject>High temperature gases</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Ions</subject><subject>Light effects</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Nickel</subject><subject>Nickel compounds</subject><subject>Photoionization</subject><subject>Porphyrins</subject><subject>Qualitative analysis</subject><subject>Relative abundance</subject><subject>Scientific imaging</subject><subject>Selective-separation</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>Solubility</subject><subject>Sulfur</subject><subject>Toluene</subject><subject>Vanadium</subject><subject>Vanadium and nickel distributions</subject><subject>Vanadium compounds</subject><subject>Vanadyl porphyrins</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AU8Bz635aNMWvMjiFyx4Ua9hmkzZ1G5ak3Zh_71d6tnTXN6bGR4ht5ylnHF136bNhF0qmOApF6KS1RlZ8bKQScFzeU5WbKYSIRW_JFcxtoyxosyzFam_wIN1056Ct9Q7840dtS6OwdXT6HofqfM0YodmdAdMIg4QYMSZTXY4jOCRQhx20I3oMdK-oTuEw5GaMFmkveviNblooIt48zfX5PP56WPzmmzfX942j9vESFGOSc14JXOhqjozKpdQllYB2NLmrCiaRuUm4zkIVFVpjZXcVmCFsLZulM1ASLkmd8veIfQ_E8ZRt_0U_HxSCyULrrjgxUyJhTKhjzFgo4fg9hCOmjN9aqlbfWqpTy310nKWHhYJ5_8PDoOOxqE3aF2Yw2jbu__0X7dOfoI</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Chacón-Patiño, Martha L.</creator><creator>Nelson, Jenny</creator><creator>Rogel, Estrella</creator><creator>Hench, Kyle</creator><creator>Poirier, Laura</creator><creator>Lopez-Linares, Francisco</creator><creator>Ovalles, Cesar</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20220315</creationdate><title>Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils</title><author>Chacón-Patiño, Martha L. ; Nelson, Jenny ; Rogel, Estrella ; Hench, Kyle ; Poirier, Laura ; Lopez-Linares, Francisco ; Ovalles, Cesar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-b01935269b4c653a88d6aad8d5077ff65c415a2e698dcd31d9ad22ddbf6d4a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetone</topic><topic>Agglomeration</topic><topic>Asphaltenes</topic><topic>Boiling</topic><topic>Boiling points</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Crude oil</topic><topic>Cyclotron resonance</topic><topic>Emission spectroscopy</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>Heavy crude oils</topic><topic>Heavy petroleum</topic><topic>Heptanes</topic><topic>High temperature gases</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Ions</topic><topic>Light effects</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Nickel</topic><topic>Nickel compounds</topic><topic>Photoionization</topic><topic>Porphyrins</topic><topic>Qualitative analysis</topic><topic>Relative abundance</topic><topic>Scientific imaging</topic><topic>Selective-separation</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>Solubility</topic><topic>Sulfur</topic><topic>Toluene</topic><topic>Vanadium</topic><topic>Vanadium and nickel distributions</topic><topic>Vanadium compounds</topic><topic>Vanadyl porphyrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacón-Patiño, Martha L.</creatorcontrib><creatorcontrib>Nelson, Jenny</creatorcontrib><creatorcontrib>Rogel, Estrella</creatorcontrib><creatorcontrib>Hench, Kyle</creatorcontrib><creatorcontrib>Poirier, Laura</creatorcontrib><creatorcontrib>Lopez-Linares, Francisco</creatorcontrib><creatorcontrib>Ovalles, Cesar</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacón-Patiño, Martha L.</au><au>Nelson, Jenny</au><au>Rogel, Estrella</au><au>Hench, Kyle</au><au>Poirier, Laura</au><au>Lopez-Linares, Francisco</au><au>Ovalles, Cesar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils</atitle><jtitle>Fuel (Guildford)</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>312</volume><spage>122939</spage><pages>122939-</pages><artnum>122939</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content than heptol and TTM.
Understanding vanadium and nickel distributions in asphaltene fractions have significant commercial importance throughout the petroleum value chain and the potential use of heavy feedstocks as a precursor of carbon-based materials, such as carbon fibers. This work extends our previous studies and aims to characterize volatile and non-volatile vanadium and nickel distributions by selective separation of n-heptane asphaltenes obtained from two Venezuelan heavy crude oils and the NIST Standard Reference Material (SRM) 8505. Asphaltenes were separated by extrography, i.e., adsorption on SiO2 and subsequent extraction with acetone, heptol (n-heptane/toluene 1:1 vol), and a mixture of toluene, THF, and methanol (TTM). The results suggest that their solubility and aggregation strongly correlate to a higher hydrogen deficiency and increased heteroatom levels. The qualitative analysis of the spent silica gel, containing irreversibly-adsorbed asphaltenes, by Light-Induced Breakdown Spectroscopy, suggests that regardless of the solvent power used during the extraction, strong chemisorbed Ni and V species remain on the SiO2, presumable associated with porphyrin molecules present on such feeds. High-Temperature Gas Chromatography coupled with Inductively Coupled Plasma Mass Spectrometry (HTGC-ICP-MS) showed that vanadium and nickel compounds have boiling points starting at 1050 °F. Quantification of the V-content below 1300 °F for the Venezuelan crude 1 indicated that the acetone fraction contains a large amount of distillable vanadium (∼62 %wt.). Interestingly, whole/unfractionated asphaltenes revealed only 47% of distillable vanadium, which suggests that the extrography method can obtain asphaltene fractions with “improved” properties (weaker aggregation, increased solubility, and lower boiling points). The characterization by atmospheric pressure photoionization Fourier Transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) and HTGC-ICP-MS revealed that the acetone asphaltene fractions have a higher relative abundance of vanadyl porphyrins (with and without sulfur) than heptol and TTM.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.122939</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2022-03, Vol.312, p.122939, Article 122939 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2637161217 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Acetone Agglomeration Asphaltenes Boiling Boiling points Carbon Carbon fibers Crude oil Cyclotron resonance Emission spectroscopy Fourier analysis Fourier transforms Gas chromatography Heavy crude oils Heavy petroleum Heptanes High temperature gases Inductively coupled plasma mass spectrometry Ions Light effects Mass spectrometry Mass spectroscopy Nickel Nickel compounds Photoionization Porphyrins Qualitative analysis Relative abundance Scientific imaging Selective-separation Silica Silica gel Silicon dioxide Solubility Sulfur Toluene Vanadium Vanadium and nickel distributions Vanadium compounds Vanadyl porphyrins |
title | Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanadium%20and%20nickel%20distributions%20in%20selective-separated%20n-heptane%20asphaltenes%20of%20heavy%20crude%20oils&rft.jtitle=Fuel%20(Guildford)&rft.au=Chac%C3%B3n-Pati%C3%B1o,%20Martha%20L.&rft.date=2022-03-15&rft.volume=312&rft.spage=122939&rft.pages=122939-&rft.artnum=122939&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.122939&rft_dat=%3Cproquest_cross%3E2637161217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637161217&rft_id=info:pmid/&rft_els_id=S0016236121028003&rfr_iscdi=true |