Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils

•Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2022-03, Vol.312, p.122939, Article 122939
Hauptverfasser: Chacón-Patiño, Martha L., Nelson, Jenny, Rogel, Estrella, Hench, Kyle, Poirier, Laura, Lopez-Linares, Francisco, Ovalles, Cesar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122939
container_title Fuel (Guildford)
container_volume 312
creator Chacón-Patiño, Martha L.
Nelson, Jenny
Rogel, Estrella
Hench, Kyle
Poirier, Laura
Lopez-Linares, Francisco
Ovalles, Cesar
description •Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content than heptol and TTM. Understanding vanadium and nickel distributions in asphaltene fractions have significant commercial importance throughout the petroleum value chain and the potential use of heavy feedstocks as a precursor of carbon-based materials, such as carbon fibers. This work extends our previous studies and aims to characterize volatile and non-volatile vanadium and nickel distributions by selective separation of n-heptane asphaltenes obtained from two Venezuelan heavy crude oils and the NIST Standard Reference Material (SRM) 8505. Asphaltenes were separated by extrography, i.e., adsorption on SiO2 and subsequent extraction with acetone, heptol (n-heptane/toluene 1:1 vol), and a mixture of toluene, THF, and methanol (TTM). The results suggest that their solubility and aggregation strongly correlate to a higher hydrogen deficiency and increased heteroatom levels. The qualitative analysis of the spent silica gel, containing irreversibly-adsorbed asphaltenes, by Light-Induced Breakdown Spectroscopy, suggests that regardless of the solvent power used during the extraction, strong chemisorbed Ni and V species remain on the SiO2, presumable associated with porphyrin molecules present on such feeds. High-Temperature Gas Chromatography coupled with Inductively Coupled Plasma Mass Spectrometry (HTGC-ICP-MS) showed that vanadium and nickel compounds have boiling points starting at 1050 °F. Quantification of the V-content below 1300 °F for the Venezuelan crude 1 indicated that the acetone fraction contains a large amount of distillable vanadium (∼62 %wt.). Interestingly, whole/unfractionated asphaltenes revealed only 47% of distillable vanadium, which suggests that the extrography method can obtain asphaltene fractions with “improved” properties (weaker aggregation, increased solubility, and lower boiling points). The characterization by atmospheric pressure photoionization Fourier Transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) and HTGC-ICP-MS revealed that the acetone asphaltene fractions have a higher relative abundance of vanadyl porphyrins (with and without sulfur) than heptol and TTM.
doi_str_mv 10.1016/j.fuel.2021.122939
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637161217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121028003</els_id><sourcerecordid>2637161217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-b01935269b4c653a88d6aad8d5077ff65c415a2e698dcd31d9ad22ddbf6d4a233</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU8Bz635aNMWvMjiFyx4Ua9hmkzZ1G5ak3Zh_71d6tnTXN6bGR4ht5ylnHF136bNhF0qmOApF6KS1RlZ8bKQScFzeU5WbKYSIRW_JFcxtoyxosyzFam_wIN1056Ct9Q7840dtS6OwdXT6HofqfM0YodmdAdMIg4QYMSZTXY4jOCRQhx20I3oMdK-oTuEw5GaMFmkveviNblooIt48zfX5PP56WPzmmzfX942j9vESFGOSc14JXOhqjozKpdQllYB2NLmrCiaRuUm4zkIVFVpjZXcVmCFsLZulM1ASLkmd8veIfQ_E8ZRt_0U_HxSCyULrrjgxUyJhTKhjzFgo4fg9hCOmjN9aqlbfWqpTy310nKWHhYJ5_8PDoOOxqE3aF2Yw2jbu__0X7dOfoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637161217</pqid></control><display><type>article</type><title>Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Chacón-Patiño, Martha L. ; Nelson, Jenny ; Rogel, Estrella ; Hench, Kyle ; Poirier, Laura ; Lopez-Linares, Francisco ; Ovalles, Cesar</creator><creatorcontrib>Chacón-Patiño, Martha L. ; Nelson, Jenny ; Rogel, Estrella ; Hench, Kyle ; Poirier, Laura ; Lopez-Linares, Francisco ; Ovalles, Cesar</creatorcontrib><description>•Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content than heptol and TTM. Understanding vanadium and nickel distributions in asphaltene fractions have significant commercial importance throughout the petroleum value chain and the potential use of heavy feedstocks as a precursor of carbon-based materials, such as carbon fibers. This work extends our previous studies and aims to characterize volatile and non-volatile vanadium and nickel distributions by selective separation of n-heptane asphaltenes obtained from two Venezuelan heavy crude oils and the NIST Standard Reference Material (SRM) 8505. Asphaltenes were separated by extrography, i.e., adsorption on SiO2 and subsequent extraction with acetone, heptol (n-heptane/toluene 1:1 vol), and a mixture of toluene, THF, and methanol (TTM). The results suggest that their solubility and aggregation strongly correlate to a higher hydrogen deficiency and increased heteroatom levels. The qualitative analysis of the spent silica gel, containing irreversibly-adsorbed asphaltenes, by Light-Induced Breakdown Spectroscopy, suggests that regardless of the solvent power used during the extraction, strong chemisorbed Ni and V species remain on the SiO2, presumable associated with porphyrin molecules present on such feeds. High-Temperature Gas Chromatography coupled with Inductively Coupled Plasma Mass Spectrometry (HTGC-ICP-MS) showed that vanadium and nickel compounds have boiling points starting at 1050 °F. Quantification of the V-content below 1300 °F for the Venezuelan crude 1 indicated that the acetone fraction contains a large amount of distillable vanadium (∼62 %wt.). Interestingly, whole/unfractionated asphaltenes revealed only 47% of distillable vanadium, which suggests that the extrography method can obtain asphaltene fractions with “improved” properties (weaker aggregation, increased solubility, and lower boiling points). The characterization by atmospheric pressure photoionization Fourier Transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) and HTGC-ICP-MS revealed that the acetone asphaltene fractions have a higher relative abundance of vanadyl porphyrins (with and without sulfur) than heptol and TTM.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.122939</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetone ; Agglomeration ; Asphaltenes ; Boiling ; Boiling points ; Carbon ; Carbon fibers ; Crude oil ; Cyclotron resonance ; Emission spectroscopy ; Fourier analysis ; Fourier transforms ; Gas chromatography ; Heavy crude oils ; Heavy petroleum ; Heptanes ; High temperature gases ; Inductively coupled plasma mass spectrometry ; Ions ; Light effects ; Mass spectrometry ; Mass spectroscopy ; Nickel ; Nickel compounds ; Photoionization ; Porphyrins ; Qualitative analysis ; Relative abundance ; Scientific imaging ; Selective-separation ; Silica ; Silica gel ; Silicon dioxide ; Solubility ; Sulfur ; Toluene ; Vanadium ; Vanadium and nickel distributions ; Vanadium compounds ; Vanadyl porphyrins</subject><ispartof>Fuel (Guildford), 2022-03, Vol.312, p.122939, Article 122939</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-b01935269b4c653a88d6aad8d5077ff65c415a2e698dcd31d9ad22ddbf6d4a233</citedby><cites>FETCH-LOGICAL-c328t-b01935269b4c653a88d6aad8d5077ff65c415a2e698dcd31d9ad22ddbf6d4a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.122939$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Chacón-Patiño, Martha L.</creatorcontrib><creatorcontrib>Nelson, Jenny</creatorcontrib><creatorcontrib>Rogel, Estrella</creatorcontrib><creatorcontrib>Hench, Kyle</creatorcontrib><creatorcontrib>Poirier, Laura</creatorcontrib><creatorcontrib>Lopez-Linares, Francisco</creatorcontrib><creatorcontrib>Ovalles, Cesar</creatorcontrib><title>Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils</title><title>Fuel (Guildford)</title><description>•Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content than heptol and TTM. Understanding vanadium and nickel distributions in asphaltene fractions have significant commercial importance throughout the petroleum value chain and the potential use of heavy feedstocks as a precursor of carbon-based materials, such as carbon fibers. This work extends our previous studies and aims to characterize volatile and non-volatile vanadium and nickel distributions by selective separation of n-heptane asphaltenes obtained from two Venezuelan heavy crude oils and the NIST Standard Reference Material (SRM) 8505. Asphaltenes were separated by extrography, i.e., adsorption on SiO2 and subsequent extraction with acetone, heptol (n-heptane/toluene 1:1 vol), and a mixture of toluene, THF, and methanol (TTM). The results suggest that their solubility and aggregation strongly correlate to a higher hydrogen deficiency and increased heteroatom levels. The qualitative analysis of the spent silica gel, containing irreversibly-adsorbed asphaltenes, by Light-Induced Breakdown Spectroscopy, suggests that regardless of the solvent power used during the extraction, strong chemisorbed Ni and V species remain on the SiO2, presumable associated with porphyrin molecules present on such feeds. High-Temperature Gas Chromatography coupled with Inductively Coupled Plasma Mass Spectrometry (HTGC-ICP-MS) showed that vanadium and nickel compounds have boiling points starting at 1050 °F. Quantification of the V-content below 1300 °F for the Venezuelan crude 1 indicated that the acetone fraction contains a large amount of distillable vanadium (∼62 %wt.). Interestingly, whole/unfractionated asphaltenes revealed only 47% of distillable vanadium, which suggests that the extrography method can obtain asphaltene fractions with “improved” properties (weaker aggregation, increased solubility, and lower boiling points). The characterization by atmospheric pressure photoionization Fourier Transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) and HTGC-ICP-MS revealed that the acetone asphaltene fractions have a higher relative abundance of vanadyl porphyrins (with and without sulfur) than heptol and TTM.</description><subject>Acetone</subject><subject>Agglomeration</subject><subject>Asphaltenes</subject><subject>Boiling</subject><subject>Boiling points</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Crude oil</subject><subject>Cyclotron resonance</subject><subject>Emission spectroscopy</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>Heavy crude oils</subject><subject>Heavy petroleum</subject><subject>Heptanes</subject><subject>High temperature gases</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Ions</subject><subject>Light effects</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Nickel</subject><subject>Nickel compounds</subject><subject>Photoionization</subject><subject>Porphyrins</subject><subject>Qualitative analysis</subject><subject>Relative abundance</subject><subject>Scientific imaging</subject><subject>Selective-separation</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>Solubility</subject><subject>Sulfur</subject><subject>Toluene</subject><subject>Vanadium</subject><subject>Vanadium and nickel distributions</subject><subject>Vanadium compounds</subject><subject>Vanadyl porphyrins</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AU8Bz635aNMWvMjiFyx4Ua9hmkzZ1G5ak3Zh_71d6tnTXN6bGR4ht5ylnHF136bNhF0qmOApF6KS1RlZ8bKQScFzeU5WbKYSIRW_JFcxtoyxosyzFam_wIN1056Ct9Q7840dtS6OwdXT6HofqfM0YodmdAdMIg4QYMSZTXY4jOCRQhx20I3oMdK-oTuEw5GaMFmkveviNblooIt48zfX5PP56WPzmmzfX942j9vESFGOSc14JXOhqjozKpdQllYB2NLmrCiaRuUm4zkIVFVpjZXcVmCFsLZulM1ASLkmd8veIfQ_E8ZRt_0U_HxSCyULrrjgxUyJhTKhjzFgo4fg9hCOmjN9aqlbfWqpTy310nKWHhYJ5_8PDoOOxqE3aF2Yw2jbu__0X7dOfoI</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Chacón-Patiño, Martha L.</creator><creator>Nelson, Jenny</creator><creator>Rogel, Estrella</creator><creator>Hench, Kyle</creator><creator>Poirier, Laura</creator><creator>Lopez-Linares, Francisco</creator><creator>Ovalles, Cesar</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20220315</creationdate><title>Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils</title><author>Chacón-Patiño, Martha L. ; Nelson, Jenny ; Rogel, Estrella ; Hench, Kyle ; Poirier, Laura ; Lopez-Linares, Francisco ; Ovalles, Cesar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-b01935269b4c653a88d6aad8d5077ff65c415a2e698dcd31d9ad22ddbf6d4a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetone</topic><topic>Agglomeration</topic><topic>Asphaltenes</topic><topic>Boiling</topic><topic>Boiling points</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Crude oil</topic><topic>Cyclotron resonance</topic><topic>Emission spectroscopy</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>Heavy crude oils</topic><topic>Heavy petroleum</topic><topic>Heptanes</topic><topic>High temperature gases</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Ions</topic><topic>Light effects</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Nickel</topic><topic>Nickel compounds</topic><topic>Photoionization</topic><topic>Porphyrins</topic><topic>Qualitative analysis</topic><topic>Relative abundance</topic><topic>Scientific imaging</topic><topic>Selective-separation</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>Solubility</topic><topic>Sulfur</topic><topic>Toluene</topic><topic>Vanadium</topic><topic>Vanadium and nickel distributions</topic><topic>Vanadium compounds</topic><topic>Vanadyl porphyrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacón-Patiño, Martha L.</creatorcontrib><creatorcontrib>Nelson, Jenny</creatorcontrib><creatorcontrib>Rogel, Estrella</creatorcontrib><creatorcontrib>Hench, Kyle</creatorcontrib><creatorcontrib>Poirier, Laura</creatorcontrib><creatorcontrib>Lopez-Linares, Francisco</creatorcontrib><creatorcontrib>Ovalles, Cesar</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacón-Patiño, Martha L.</au><au>Nelson, Jenny</au><au>Rogel, Estrella</au><au>Hench, Kyle</au><au>Poirier, Laura</au><au>Lopez-Linares, Francisco</au><au>Ovalles, Cesar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils</atitle><jtitle>Fuel (Guildford)</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>312</volume><spage>122939</spage><pages>122939-</pages><artnum>122939</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Volatile and non-volatile V and Ni compounds were separated by extrography.•Qualitative analysis of the spent silica gel contained adsorbed Ni and V porphyrins.•Acetone asphaltene fractions contain a large amount of distillable V (62 %wt.).•Acetone asphaltenes have higher vanadyl porphyrins content than heptol and TTM. Understanding vanadium and nickel distributions in asphaltene fractions have significant commercial importance throughout the petroleum value chain and the potential use of heavy feedstocks as a precursor of carbon-based materials, such as carbon fibers. This work extends our previous studies and aims to characterize volatile and non-volatile vanadium and nickel distributions by selective separation of n-heptane asphaltenes obtained from two Venezuelan heavy crude oils and the NIST Standard Reference Material (SRM) 8505. Asphaltenes were separated by extrography, i.e., adsorption on SiO2 and subsequent extraction with acetone, heptol (n-heptane/toluene 1:1 vol), and a mixture of toluene, THF, and methanol (TTM). The results suggest that their solubility and aggregation strongly correlate to a higher hydrogen deficiency and increased heteroatom levels. The qualitative analysis of the spent silica gel, containing irreversibly-adsorbed asphaltenes, by Light-Induced Breakdown Spectroscopy, suggests that regardless of the solvent power used during the extraction, strong chemisorbed Ni and V species remain on the SiO2, presumable associated with porphyrin molecules present on such feeds. High-Temperature Gas Chromatography coupled with Inductively Coupled Plasma Mass Spectrometry (HTGC-ICP-MS) showed that vanadium and nickel compounds have boiling points starting at 1050 °F. Quantification of the V-content below 1300 °F for the Venezuelan crude 1 indicated that the acetone fraction contains a large amount of distillable vanadium (∼62 %wt.). Interestingly, whole/unfractionated asphaltenes revealed only 47% of distillable vanadium, which suggests that the extrography method can obtain asphaltene fractions with “improved” properties (weaker aggregation, increased solubility, and lower boiling points). The characterization by atmospheric pressure photoionization Fourier Transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) and HTGC-ICP-MS revealed that the acetone asphaltene fractions have a higher relative abundance of vanadyl porphyrins (with and without sulfur) than heptol and TTM.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.122939</doi></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2022-03, Vol.312, p.122939, Article 122939
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2637161217
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Acetone
Agglomeration
Asphaltenes
Boiling
Boiling points
Carbon
Carbon fibers
Crude oil
Cyclotron resonance
Emission spectroscopy
Fourier analysis
Fourier transforms
Gas chromatography
Heavy crude oils
Heavy petroleum
Heptanes
High temperature gases
Inductively coupled plasma mass spectrometry
Ions
Light effects
Mass spectrometry
Mass spectroscopy
Nickel
Nickel compounds
Photoionization
Porphyrins
Qualitative analysis
Relative abundance
Scientific imaging
Selective-separation
Silica
Silica gel
Silicon dioxide
Solubility
Sulfur
Toluene
Vanadium
Vanadium and nickel distributions
Vanadium compounds
Vanadyl porphyrins
title Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanadium%20and%20nickel%20distributions%20in%20selective-separated%20n-heptane%20asphaltenes%20of%20heavy%20crude%20oils&rft.jtitle=Fuel%20(Guildford)&rft.au=Chac%C3%B3n-Pati%C3%B1o,%20Martha%20L.&rft.date=2022-03-15&rft.volume=312&rft.spage=122939&rft.pages=122939-&rft.artnum=122939&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.122939&rft_dat=%3Cproquest_cross%3E2637161217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637161217&rft_id=info:pmid/&rft_els_id=S0016236121028003&rfr_iscdi=true