A GPU-accelerated adaptive FSAI preconditioner for massively parallel simulations

The solution of linear systems of equations is a central task in a number of scientific and engineering applications. In many cases the solution of linear systems may take most of the simulation time thus representing a major bottleneck in the further development of scientific and technical software...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of high performance computing applications 2022-03, Vol.36 (2), p.153-166
Hauptverfasser: Isotton, Giovanni, Janna, Carlo, Bernaschi, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 2
container_start_page 153
container_title The international journal of high performance computing applications
container_volume 36
creator Isotton, Giovanni
Janna, Carlo
Bernaschi, Massimo
description The solution of linear systems of equations is a central task in a number of scientific and engineering applications. In many cases the solution of linear systems may take most of the simulation time thus representing a major bottleneck in the further development of scientific and technical software. For large scale simulations, nowadays accounting for several millions or even billions of unknowns, it is quite common to resort to preconditioned iterative solvers for exploiting their low memory requirements and, at least potential, parallelism. Approximate inverses have been shown to be robust and effective preconditioners in various contexts. In this work, we show how adaptive Factored Sparse Approximate Inverse (aFSAI), characterized by a very high degree of parallelism, can be successfully implemented on a distributed memory computer equipped with GPU accelerators. Taking advantage of GPUs in adaptive FSAI set-up is not a trivial task, nevertheless we show through an extensive numerical experimentation how the proposed approach outperforms more traditional preconditioners and results in a close-to-ideal behavior in challenging linear algebra problems.
doi_str_mv 10.1177/10943420211017188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637117955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10943420211017188</sage_id><sourcerecordid>2637117955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d45eea77c2c0e169c291a0f286a77ca76793639e5d0d9d09bd2222fbc940250f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8Z3MsxX5AQUV7XtJkVrak3TXZCv33ZqngQZzLDDPP-w68CN1TMqFU60dKjOCCEUYpoZqW5QUaUS1owUqhLvOc78UAXKOblHaEECW4HKHXKV68bArrHASItgePrbdd33wBnr9NV7iL4NqDb_qmPUDEdRvx3qaU7-GEOxttCBBwavbHYAcm3aKr2oYEdz99jDbzp_fZslg_L1az6bpwXMq-8EICWK0dcwSoMo4ZaknNSjUsrVbacMUNSE-88cRsPctVb50RhElS8zF6OPt2sf08QuqrXXuMh_yyYorrnIqRMlP0TLnYphShrrrY7G08VZRUQ3LVn-SyZnLWJPsBv67_C74Bu1Js-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637117955</pqid></control><display><type>article</type><title>A GPU-accelerated adaptive FSAI preconditioner for massively parallel simulations</title><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><creator>Isotton, Giovanni ; Janna, Carlo ; Bernaschi, Massimo</creator><creatorcontrib>Isotton, Giovanni ; Janna, Carlo ; Bernaschi, Massimo</creatorcontrib><description>The solution of linear systems of equations is a central task in a number of scientific and engineering applications. In many cases the solution of linear systems may take most of the simulation time thus representing a major bottleneck in the further development of scientific and technical software. For large scale simulations, nowadays accounting for several millions or even billions of unknowns, it is quite common to resort to preconditioned iterative solvers for exploiting their low memory requirements and, at least potential, parallelism. Approximate inverses have been shown to be robust and effective preconditioners in various contexts. In this work, we show how adaptive Factored Sparse Approximate Inverse (aFSAI), characterized by a very high degree of parallelism, can be successfully implemented on a distributed memory computer equipped with GPU accelerators. Taking advantage of GPUs in adaptive FSAI set-up is not a trivial task, nevertheless we show through an extensive numerical experimentation how the proposed approach outperforms more traditional preconditioners and results in a close-to-ideal behavior in challenging linear algebra problems.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/10943420211017188</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Distributed memory ; Experimentation ; Iterative methods ; Linear algebra ; Linear systems ; Robustness (mathematics) ; Simulation</subject><ispartof>The international journal of high performance computing applications, 2022-03, Vol.36 (2), p.153-166</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d45eea77c2c0e169c291a0f286a77ca76793639e5d0d9d09bd2222fbc940250f3</citedby><cites>FETCH-LOGICAL-c355t-d45eea77c2c0e169c291a0f286a77ca76793639e5d0d9d09bd2222fbc940250f3</cites><orcidid>0000-0002-1548-2378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10943420211017188$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10943420211017188$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Isotton, Giovanni</creatorcontrib><creatorcontrib>Janna, Carlo</creatorcontrib><creatorcontrib>Bernaschi, Massimo</creatorcontrib><title>A GPU-accelerated adaptive FSAI preconditioner for massively parallel simulations</title><title>The international journal of high performance computing applications</title><description>The solution of linear systems of equations is a central task in a number of scientific and engineering applications. In many cases the solution of linear systems may take most of the simulation time thus representing a major bottleneck in the further development of scientific and technical software. For large scale simulations, nowadays accounting for several millions or even billions of unknowns, it is quite common to resort to preconditioned iterative solvers for exploiting their low memory requirements and, at least potential, parallelism. Approximate inverses have been shown to be robust and effective preconditioners in various contexts. In this work, we show how adaptive Factored Sparse Approximate Inverse (aFSAI), characterized by a very high degree of parallelism, can be successfully implemented on a distributed memory computer equipped with GPU accelerators. Taking advantage of GPUs in adaptive FSAI set-up is not a trivial task, nevertheless we show through an extensive numerical experimentation how the proposed approach outperforms more traditional preconditioners and results in a close-to-ideal behavior in challenging linear algebra problems.</description><subject>Distributed memory</subject><subject>Experimentation</subject><subject>Iterative methods</subject><subject>Linear algebra</subject><subject>Linear systems</subject><subject>Robustness (mathematics)</subject><subject>Simulation</subject><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8Z3MsxX5AQUV7XtJkVrak3TXZCv33ZqngQZzLDDPP-w68CN1TMqFU60dKjOCCEUYpoZqW5QUaUS1owUqhLvOc78UAXKOblHaEECW4HKHXKV68bArrHASItgePrbdd33wBnr9NV7iL4NqDb_qmPUDEdRvx3qaU7-GEOxttCBBwavbHYAcm3aKr2oYEdz99jDbzp_fZslg_L1az6bpwXMq-8EICWK0dcwSoMo4ZaknNSjUsrVbacMUNSE-88cRsPctVb50RhElS8zF6OPt2sf08QuqrXXuMh_yyYorrnIqRMlP0TLnYphShrrrY7G08VZRUQ3LVn-SyZnLWJPsBv67_C74Bu1Js-A</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Isotton, Giovanni</creator><creator>Janna, Carlo</creator><creator>Bernaschi, Massimo</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1548-2378</orcidid></search><sort><creationdate>202203</creationdate><title>A GPU-accelerated adaptive FSAI preconditioner for massively parallel simulations</title><author>Isotton, Giovanni ; Janna, Carlo ; Bernaschi, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d45eea77c2c0e169c291a0f286a77ca76793639e5d0d9d09bd2222fbc940250f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distributed memory</topic><topic>Experimentation</topic><topic>Iterative methods</topic><topic>Linear algebra</topic><topic>Linear systems</topic><topic>Robustness (mathematics)</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isotton, Giovanni</creatorcontrib><creatorcontrib>Janna, Carlo</creatorcontrib><creatorcontrib>Bernaschi, Massimo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isotton, Giovanni</au><au>Janna, Carlo</au><au>Bernaschi, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A GPU-accelerated adaptive FSAI preconditioner for massively parallel simulations</atitle><jtitle>The international journal of high performance computing applications</jtitle><date>2022-03</date><risdate>2022</risdate><volume>36</volume><issue>2</issue><spage>153</spage><epage>166</epage><pages>153-166</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>The solution of linear systems of equations is a central task in a number of scientific and engineering applications. In many cases the solution of linear systems may take most of the simulation time thus representing a major bottleneck in the further development of scientific and technical software. For large scale simulations, nowadays accounting for several millions or even billions of unknowns, it is quite common to resort to preconditioned iterative solvers for exploiting their low memory requirements and, at least potential, parallelism. Approximate inverses have been shown to be robust and effective preconditioners in various contexts. In this work, we show how adaptive Factored Sparse Approximate Inverse (aFSAI), characterized by a very high degree of parallelism, can be successfully implemented on a distributed memory computer equipped with GPU accelerators. Taking advantage of GPUs in adaptive FSAI set-up is not a trivial task, nevertheless we show through an extensive numerical experimentation how the proposed approach outperforms more traditional preconditioners and results in a close-to-ideal behavior in challenging linear algebra problems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10943420211017188</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1548-2378</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-3420
ispartof The international journal of high performance computing applications, 2022-03, Vol.36 (2), p.153-166
issn 1094-3420
1741-2846
language eng
recordid cdi_proquest_journals_2637117955
source SAGE Complete; Alma/SFX Local Collection
subjects Distributed memory
Experimentation
Iterative methods
Linear algebra
Linear systems
Robustness (mathematics)
Simulation
title A GPU-accelerated adaptive FSAI preconditioner for massively parallel simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20GPU-accelerated%20adaptive%20FSAI%20preconditioner%20for%20massively%20parallel%20simulations&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Isotton,%20Giovanni&rft.date=2022-03&rft.volume=36&rft.issue=2&rft.spage=153&rft.epage=166&rft.pages=153-166&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/10943420211017188&rft_dat=%3Cproquest_cross%3E2637117955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637117955&rft_id=info:pmid/&rft_sage_id=10.1177_10943420211017188&rfr_iscdi=true