The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights

Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Gasse, Maxime, Cappart, Quentin, Charfreitag, Jonas, Charlin, Laurent, Chételat, Didier, Chmiela, Antonia, Dumouchelle, Justin, Ambros Gleixner, Kazachkov, Aleksandr M, Khalil, Elias, Lichocki, Pawel, Lodi, Andrea, Lubin, Miles, Maddison, Chris J, Morris, Christopher, Papageorgiou, Dimitri J, Parjadis, Augustin, Pokutta, Sebastian, Prouvost, Antoine, Scavuzzo, Lara, Zarpellon, Giulia, Yang, Linxin, Lai, Sha, Wang, Akang, Luo, Xiaodong, Zhou, Xiang, Huang, Haohan, Shao, Shengcheng, Zhu, Yuanming, Zhang, Dong, Quan, Tao, Cao, Zixuan, Xu, Yang, Huang, Zhewei, Zhou, Shuchang, Chen, Binbin, He Minggui, Hao, Hao, Zhang, Zhiyu, An Zhiwu, Mao Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gasse, Maxime
Cappart, Quentin
Charfreitag, Jonas
Charlin, Laurent
Chételat, Didier
Chmiela, Antonia
Dumouchelle, Justin
Ambros Gleixner
Kazachkov, Aleksandr M
Khalil, Elias
Lichocki, Pawel
Lodi, Andrea
Lubin, Miles
Maddison, Chris J
Morris, Christopher
Papageorgiou, Dimitri J
Parjadis, Augustin
Pokutta, Sebastian
Prouvost, Antoine
Scavuzzo, Lara
Zarpellon, Giulia
Yang, Linxin
Lai, Sha
Wang, Akang
Luo, Xiaodong
Zhou, Xiang
Huang, Haohan
Shao, Shengcheng
Zhu, Yuanming
Zhang, Dong
Quan, Tao
Cao, Zixuan
Xu, Yang
Huang, Zhewei
Zhou, Shuchang
Chen, Binbin
He Minggui
Hao, Hao
Zhang, Zhiyu
An Zhiwu
Mao Kun
description Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2637043346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637043346</sourcerecordid><originalsourceid>FETCH-proquest_journals_26370433463</originalsourceid><addsrcrecordid>eNqNik8LgjAcQEcQJOV3GHSpg7C2qdFVigJFCK8hq6b-RDfb5qVP3x_6AJ3eg_cmyKOMbYItp3SGfGtbQgiNYhqGzEOXopE4E7cGlMSpFEaBqnGlDU50fwUlnDYgOpwPDnp4CgdafdIgHXx9laU8ydc7fJZ27JzFQt3xSVmoG2cXaFqJzkr_xzlaHvZFcgwGox-jtK5s9WjUO5U0YjHhjPGI_Xe9AJ51Quk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637043346</pqid></control><display><type>article</type><title>The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights</title><source>Free E- Journals</source><creator>Gasse, Maxime ; Cappart, Quentin ; Charfreitag, Jonas ; Charlin, Laurent ; Chételat, Didier ; Chmiela, Antonia ; Dumouchelle, Justin ; Ambros Gleixner ; Kazachkov, Aleksandr M ; Khalil, Elias ; Lichocki, Pawel ; Lodi, Andrea ; Lubin, Miles ; Maddison, Chris J ; Morris, Christopher ; Papageorgiou, Dimitri J ; Parjadis, Augustin ; Pokutta, Sebastian ; Prouvost, Antoine ; Scavuzzo, Lara ; Zarpellon, Giulia ; Yang, Linxin ; Lai, Sha ; Wang, Akang ; Luo, Xiaodong ; Zhou, Xiang ; Huang, Haohan ; Shao, Shengcheng ; Zhu, Yuanming ; Zhang, Dong ; Quan, Tao ; Cao, Zixuan ; Xu, Yang ; Huang, Zhewei ; Zhou, Shuchang ; Chen, Binbin ; He Minggui ; Hao, Hao ; Zhang, Zhiyu ; An Zhiwu ; Mao Kun</creator><creatorcontrib>Gasse, Maxime ; Cappart, Quentin ; Charfreitag, Jonas ; Charlin, Laurent ; Chételat, Didier ; Chmiela, Antonia ; Dumouchelle, Justin ; Ambros Gleixner ; Kazachkov, Aleksandr M ; Khalil, Elias ; Lichocki, Pawel ; Lodi, Andrea ; Lubin, Miles ; Maddison, Chris J ; Morris, Christopher ; Papageorgiou, Dimitri J ; Parjadis, Augustin ; Pokutta, Sebastian ; Prouvost, Antoine ; Scavuzzo, Lara ; Zarpellon, Giulia ; Yang, Linxin ; Lai, Sha ; Wang, Akang ; Luo, Xiaodong ; Zhou, Xiang ; Huang, Haohan ; Shao, Shengcheng ; Zhu, Yuanming ; Zhang, Dong ; Quan, Tao ; Cao, Zixuan ; Xu, Yang ; Huang, Zhewei ; Zhou, Shuchang ; Chen, Binbin ; He Minggui ; Hao, Hao ; Zhang, Zhiyu ; An Zhiwu ; Mao Kun</creatorcontrib><description>Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Competition ; Computer networks ; Datasets ; Machine learning ; Operations research ; Optimization ; Solvers</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Gasse, Maxime</creatorcontrib><creatorcontrib>Cappart, Quentin</creatorcontrib><creatorcontrib>Charfreitag, Jonas</creatorcontrib><creatorcontrib>Charlin, Laurent</creatorcontrib><creatorcontrib>Chételat, Didier</creatorcontrib><creatorcontrib>Chmiela, Antonia</creatorcontrib><creatorcontrib>Dumouchelle, Justin</creatorcontrib><creatorcontrib>Ambros Gleixner</creatorcontrib><creatorcontrib>Kazachkov, Aleksandr M</creatorcontrib><creatorcontrib>Khalil, Elias</creatorcontrib><creatorcontrib>Lichocki, Pawel</creatorcontrib><creatorcontrib>Lodi, Andrea</creatorcontrib><creatorcontrib>Lubin, Miles</creatorcontrib><creatorcontrib>Maddison, Chris J</creatorcontrib><creatorcontrib>Morris, Christopher</creatorcontrib><creatorcontrib>Papageorgiou, Dimitri J</creatorcontrib><creatorcontrib>Parjadis, Augustin</creatorcontrib><creatorcontrib>Pokutta, Sebastian</creatorcontrib><creatorcontrib>Prouvost, Antoine</creatorcontrib><creatorcontrib>Scavuzzo, Lara</creatorcontrib><creatorcontrib>Zarpellon, Giulia</creatorcontrib><creatorcontrib>Yang, Linxin</creatorcontrib><creatorcontrib>Lai, Sha</creatorcontrib><creatorcontrib>Wang, Akang</creatorcontrib><creatorcontrib>Luo, Xiaodong</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Huang, Haohan</creatorcontrib><creatorcontrib>Shao, Shengcheng</creatorcontrib><creatorcontrib>Zhu, Yuanming</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Quan, Tao</creatorcontrib><creatorcontrib>Cao, Zixuan</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Huang, Zhewei</creatorcontrib><creatorcontrib>Zhou, Shuchang</creatorcontrib><creatorcontrib>Chen, Binbin</creatorcontrib><creatorcontrib>He Minggui</creatorcontrib><creatorcontrib>Hao, Hao</creatorcontrib><creatorcontrib>Zhang, Zhiyu</creatorcontrib><creatorcontrib>An Zhiwu</creatorcontrib><creatorcontrib>Mao Kun</creatorcontrib><title>The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights</title><title>arXiv.org</title><description>Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants.</description><subject>Combinatorial analysis</subject><subject>Competition</subject><subject>Computer networks</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Solvers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik8LgjAcQEcQJOV3GHSpg7C2qdFVigJFCK8hq6b-RDfb5qVP3x_6AJ3eg_cmyKOMbYItp3SGfGtbQgiNYhqGzEOXopE4E7cGlMSpFEaBqnGlDU50fwUlnDYgOpwPDnp4CgdafdIgHXx9laU8ydc7fJZ27JzFQt3xSVmoG2cXaFqJzkr_xzlaHvZFcgwGox-jtK5s9WjUO5U0YjHhjPGI_Xe9AJ51Quk</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Gasse, Maxime</creator><creator>Cappart, Quentin</creator><creator>Charfreitag, Jonas</creator><creator>Charlin, Laurent</creator><creator>Chételat, Didier</creator><creator>Chmiela, Antonia</creator><creator>Dumouchelle, Justin</creator><creator>Ambros Gleixner</creator><creator>Kazachkov, Aleksandr M</creator><creator>Khalil, Elias</creator><creator>Lichocki, Pawel</creator><creator>Lodi, Andrea</creator><creator>Lubin, Miles</creator><creator>Maddison, Chris J</creator><creator>Morris, Christopher</creator><creator>Papageorgiou, Dimitri J</creator><creator>Parjadis, Augustin</creator><creator>Pokutta, Sebastian</creator><creator>Prouvost, Antoine</creator><creator>Scavuzzo, Lara</creator><creator>Zarpellon, Giulia</creator><creator>Yang, Linxin</creator><creator>Lai, Sha</creator><creator>Wang, Akang</creator><creator>Luo, Xiaodong</creator><creator>Zhou, Xiang</creator><creator>Huang, Haohan</creator><creator>Shao, Shengcheng</creator><creator>Zhu, Yuanming</creator><creator>Zhang, Dong</creator><creator>Quan, Tao</creator><creator>Cao, Zixuan</creator><creator>Xu, Yang</creator><creator>Huang, Zhewei</creator><creator>Zhou, Shuchang</creator><creator>Chen, Binbin</creator><creator>He Minggui</creator><creator>Hao, Hao</creator><creator>Zhang, Zhiyu</creator><creator>An Zhiwu</creator><creator>Mao Kun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220317</creationdate><title>The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights</title><author>Gasse, Maxime ; Cappart, Quentin ; Charfreitag, Jonas ; Charlin, Laurent ; Chételat, Didier ; Chmiela, Antonia ; Dumouchelle, Justin ; Ambros Gleixner ; Kazachkov, Aleksandr M ; Khalil, Elias ; Lichocki, Pawel ; Lodi, Andrea ; Lubin, Miles ; Maddison, Chris J ; Morris, Christopher ; Papageorgiou, Dimitri J ; Parjadis, Augustin ; Pokutta, Sebastian ; Prouvost, Antoine ; Scavuzzo, Lara ; Zarpellon, Giulia ; Yang, Linxin ; Lai, Sha ; Wang, Akang ; Luo, Xiaodong ; Zhou, Xiang ; Huang, Haohan ; Shao, Shengcheng ; Zhu, Yuanming ; Zhang, Dong ; Quan, Tao ; Cao, Zixuan ; Xu, Yang ; Huang, Zhewei ; Zhou, Shuchang ; Chen, Binbin ; He Minggui ; Hao, Hao ; Zhang, Zhiyu ; An Zhiwu ; Mao Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26370433463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Competition</topic><topic>Computer networks</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Solvers</topic><toplevel>online_resources</toplevel><creatorcontrib>Gasse, Maxime</creatorcontrib><creatorcontrib>Cappart, Quentin</creatorcontrib><creatorcontrib>Charfreitag, Jonas</creatorcontrib><creatorcontrib>Charlin, Laurent</creatorcontrib><creatorcontrib>Chételat, Didier</creatorcontrib><creatorcontrib>Chmiela, Antonia</creatorcontrib><creatorcontrib>Dumouchelle, Justin</creatorcontrib><creatorcontrib>Ambros Gleixner</creatorcontrib><creatorcontrib>Kazachkov, Aleksandr M</creatorcontrib><creatorcontrib>Khalil, Elias</creatorcontrib><creatorcontrib>Lichocki, Pawel</creatorcontrib><creatorcontrib>Lodi, Andrea</creatorcontrib><creatorcontrib>Lubin, Miles</creatorcontrib><creatorcontrib>Maddison, Chris J</creatorcontrib><creatorcontrib>Morris, Christopher</creatorcontrib><creatorcontrib>Papageorgiou, Dimitri J</creatorcontrib><creatorcontrib>Parjadis, Augustin</creatorcontrib><creatorcontrib>Pokutta, Sebastian</creatorcontrib><creatorcontrib>Prouvost, Antoine</creatorcontrib><creatorcontrib>Scavuzzo, Lara</creatorcontrib><creatorcontrib>Zarpellon, Giulia</creatorcontrib><creatorcontrib>Yang, Linxin</creatorcontrib><creatorcontrib>Lai, Sha</creatorcontrib><creatorcontrib>Wang, Akang</creatorcontrib><creatorcontrib>Luo, Xiaodong</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Huang, Haohan</creatorcontrib><creatorcontrib>Shao, Shengcheng</creatorcontrib><creatorcontrib>Zhu, Yuanming</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Quan, Tao</creatorcontrib><creatorcontrib>Cao, Zixuan</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Huang, Zhewei</creatorcontrib><creatorcontrib>Zhou, Shuchang</creatorcontrib><creatorcontrib>Chen, Binbin</creatorcontrib><creatorcontrib>He Minggui</creatorcontrib><creatorcontrib>Hao, Hao</creatorcontrib><creatorcontrib>Zhang, Zhiyu</creatorcontrib><creatorcontrib>An Zhiwu</creatorcontrib><creatorcontrib>Mao Kun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gasse, Maxime</au><au>Cappart, Quentin</au><au>Charfreitag, Jonas</au><au>Charlin, Laurent</au><au>Chételat, Didier</au><au>Chmiela, Antonia</au><au>Dumouchelle, Justin</au><au>Ambros Gleixner</au><au>Kazachkov, Aleksandr M</au><au>Khalil, Elias</au><au>Lichocki, Pawel</au><au>Lodi, Andrea</au><au>Lubin, Miles</au><au>Maddison, Chris J</au><au>Morris, Christopher</au><au>Papageorgiou, Dimitri J</au><au>Parjadis, Augustin</au><au>Pokutta, Sebastian</au><au>Prouvost, Antoine</au><au>Scavuzzo, Lara</au><au>Zarpellon, Giulia</au><au>Yang, Linxin</au><au>Lai, Sha</au><au>Wang, Akang</au><au>Luo, Xiaodong</au><au>Zhou, Xiang</au><au>Huang, Haohan</au><au>Shao, Shengcheng</au><au>Zhu, Yuanming</au><au>Zhang, Dong</au><au>Quan, Tao</au><au>Cao, Zixuan</au><au>Xu, Yang</au><au>Huang, Zhewei</au><au>Zhou, Shuchang</au><au>Chen, Binbin</au><au>He Minggui</au><au>Hao, Hao</au><au>Zhang, Zhiyu</au><au>An Zhiwu</au><au>Mao Kun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights</atitle><jtitle>arXiv.org</jtitle><date>2022-03-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2637043346
source Free E- Journals
subjects Combinatorial analysis
Competition
Computer networks
Datasets
Machine learning
Operations research
Optimization
Solvers
title The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Machine%20Learning%20for%20Combinatorial%20Optimization%20Competition%20(ML4CO):%20Results%20and%20Insights&rft.jtitle=arXiv.org&rft.au=Gasse,%20Maxime&rft.date=2022-03-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2637043346%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637043346&rft_id=info:pmid/&rfr_iscdi=true