The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights
Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gasse, Maxime Cappart, Quentin Charfreitag, Jonas Charlin, Laurent Chételat, Didier Chmiela, Antonia Dumouchelle, Justin Ambros Gleixner Kazachkov, Aleksandr M Khalil, Elias Lichocki, Pawel Lodi, Andrea Lubin, Miles Maddison, Chris J Morris, Christopher Papageorgiou, Dimitri J Parjadis, Augustin Pokutta, Sebastian Prouvost, Antoine Scavuzzo, Lara Zarpellon, Giulia Yang, Linxin Lai, Sha Wang, Akang Luo, Xiaodong Zhou, Xiang Huang, Haohan Shao, Shengcheng Zhu, Yuanming Zhang, Dong Quan, Tao Cao, Zixuan Xu, Yang Huang, Zhewei Zhou, Shuchang Chen, Binbin He Minggui Hao, Hao Zhang, Zhiyu An Zhiwu Mao Kun |
description | Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2637043346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637043346</sourcerecordid><originalsourceid>FETCH-proquest_journals_26370433463</originalsourceid><addsrcrecordid>eNqNik8LgjAcQEcQJOV3GHSpg7C2qdFVigJFCK8hq6b-RDfb5qVP3x_6AJ3eg_cmyKOMbYItp3SGfGtbQgiNYhqGzEOXopE4E7cGlMSpFEaBqnGlDU50fwUlnDYgOpwPDnp4CgdafdIgHXx9laU8ydc7fJZ27JzFQt3xSVmoG2cXaFqJzkr_xzlaHvZFcgwGox-jtK5s9WjUO5U0YjHhjPGI_Xe9AJ51Quk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637043346</pqid></control><display><type>article</type><title>The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights</title><source>Free E- Journals</source><creator>Gasse, Maxime ; Cappart, Quentin ; Charfreitag, Jonas ; Charlin, Laurent ; Chételat, Didier ; Chmiela, Antonia ; Dumouchelle, Justin ; Ambros Gleixner ; Kazachkov, Aleksandr M ; Khalil, Elias ; Lichocki, Pawel ; Lodi, Andrea ; Lubin, Miles ; Maddison, Chris J ; Morris, Christopher ; Papageorgiou, Dimitri J ; Parjadis, Augustin ; Pokutta, Sebastian ; Prouvost, Antoine ; Scavuzzo, Lara ; Zarpellon, Giulia ; Yang, Linxin ; Lai, Sha ; Wang, Akang ; Luo, Xiaodong ; Zhou, Xiang ; Huang, Haohan ; Shao, Shengcheng ; Zhu, Yuanming ; Zhang, Dong ; Quan, Tao ; Cao, Zixuan ; Xu, Yang ; Huang, Zhewei ; Zhou, Shuchang ; Chen, Binbin ; He Minggui ; Hao, Hao ; Zhang, Zhiyu ; An Zhiwu ; Mao Kun</creator><creatorcontrib>Gasse, Maxime ; Cappart, Quentin ; Charfreitag, Jonas ; Charlin, Laurent ; Chételat, Didier ; Chmiela, Antonia ; Dumouchelle, Justin ; Ambros Gleixner ; Kazachkov, Aleksandr M ; Khalil, Elias ; Lichocki, Pawel ; Lodi, Andrea ; Lubin, Miles ; Maddison, Chris J ; Morris, Christopher ; Papageorgiou, Dimitri J ; Parjadis, Augustin ; Pokutta, Sebastian ; Prouvost, Antoine ; Scavuzzo, Lara ; Zarpellon, Giulia ; Yang, Linxin ; Lai, Sha ; Wang, Akang ; Luo, Xiaodong ; Zhou, Xiang ; Huang, Haohan ; Shao, Shengcheng ; Zhu, Yuanming ; Zhang, Dong ; Quan, Tao ; Cao, Zixuan ; Xu, Yang ; Huang, Zhewei ; Zhou, Shuchang ; Chen, Binbin ; He Minggui ; Hao, Hao ; Zhang, Zhiyu ; An Zhiwu ; Mao Kun</creatorcontrib><description>Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Competition ; Computer networks ; Datasets ; Machine learning ; Operations research ; Optimization ; Solvers</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Gasse, Maxime</creatorcontrib><creatorcontrib>Cappart, Quentin</creatorcontrib><creatorcontrib>Charfreitag, Jonas</creatorcontrib><creatorcontrib>Charlin, Laurent</creatorcontrib><creatorcontrib>Chételat, Didier</creatorcontrib><creatorcontrib>Chmiela, Antonia</creatorcontrib><creatorcontrib>Dumouchelle, Justin</creatorcontrib><creatorcontrib>Ambros Gleixner</creatorcontrib><creatorcontrib>Kazachkov, Aleksandr M</creatorcontrib><creatorcontrib>Khalil, Elias</creatorcontrib><creatorcontrib>Lichocki, Pawel</creatorcontrib><creatorcontrib>Lodi, Andrea</creatorcontrib><creatorcontrib>Lubin, Miles</creatorcontrib><creatorcontrib>Maddison, Chris J</creatorcontrib><creatorcontrib>Morris, Christopher</creatorcontrib><creatorcontrib>Papageorgiou, Dimitri J</creatorcontrib><creatorcontrib>Parjadis, Augustin</creatorcontrib><creatorcontrib>Pokutta, Sebastian</creatorcontrib><creatorcontrib>Prouvost, Antoine</creatorcontrib><creatorcontrib>Scavuzzo, Lara</creatorcontrib><creatorcontrib>Zarpellon, Giulia</creatorcontrib><creatorcontrib>Yang, Linxin</creatorcontrib><creatorcontrib>Lai, Sha</creatorcontrib><creatorcontrib>Wang, Akang</creatorcontrib><creatorcontrib>Luo, Xiaodong</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Huang, Haohan</creatorcontrib><creatorcontrib>Shao, Shengcheng</creatorcontrib><creatorcontrib>Zhu, Yuanming</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Quan, Tao</creatorcontrib><creatorcontrib>Cao, Zixuan</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Huang, Zhewei</creatorcontrib><creatorcontrib>Zhou, Shuchang</creatorcontrib><creatorcontrib>Chen, Binbin</creatorcontrib><creatorcontrib>He Minggui</creatorcontrib><creatorcontrib>Hao, Hao</creatorcontrib><creatorcontrib>Zhang, Zhiyu</creatorcontrib><creatorcontrib>An Zhiwu</creatorcontrib><creatorcontrib>Mao Kun</creatorcontrib><title>The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights</title><title>arXiv.org</title><description>Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants.</description><subject>Combinatorial analysis</subject><subject>Competition</subject><subject>Computer networks</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Solvers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik8LgjAcQEcQJOV3GHSpg7C2qdFVigJFCK8hq6b-RDfb5qVP3x_6AJ3eg_cmyKOMbYItp3SGfGtbQgiNYhqGzEOXopE4E7cGlMSpFEaBqnGlDU50fwUlnDYgOpwPDnp4CgdafdIgHXx9laU8ydc7fJZ27JzFQt3xSVmoG2cXaFqJzkr_xzlaHvZFcgwGox-jtK5s9WjUO5U0YjHhjPGI_Xe9AJ51Quk</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Gasse, Maxime</creator><creator>Cappart, Quentin</creator><creator>Charfreitag, Jonas</creator><creator>Charlin, Laurent</creator><creator>Chételat, Didier</creator><creator>Chmiela, Antonia</creator><creator>Dumouchelle, Justin</creator><creator>Ambros Gleixner</creator><creator>Kazachkov, Aleksandr M</creator><creator>Khalil, Elias</creator><creator>Lichocki, Pawel</creator><creator>Lodi, Andrea</creator><creator>Lubin, Miles</creator><creator>Maddison, Chris J</creator><creator>Morris, Christopher</creator><creator>Papageorgiou, Dimitri J</creator><creator>Parjadis, Augustin</creator><creator>Pokutta, Sebastian</creator><creator>Prouvost, Antoine</creator><creator>Scavuzzo, Lara</creator><creator>Zarpellon, Giulia</creator><creator>Yang, Linxin</creator><creator>Lai, Sha</creator><creator>Wang, Akang</creator><creator>Luo, Xiaodong</creator><creator>Zhou, Xiang</creator><creator>Huang, Haohan</creator><creator>Shao, Shengcheng</creator><creator>Zhu, Yuanming</creator><creator>Zhang, Dong</creator><creator>Quan, Tao</creator><creator>Cao, Zixuan</creator><creator>Xu, Yang</creator><creator>Huang, Zhewei</creator><creator>Zhou, Shuchang</creator><creator>Chen, Binbin</creator><creator>He Minggui</creator><creator>Hao, Hao</creator><creator>Zhang, Zhiyu</creator><creator>An Zhiwu</creator><creator>Mao Kun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220317</creationdate><title>The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights</title><author>Gasse, Maxime ; Cappart, Quentin ; Charfreitag, Jonas ; Charlin, Laurent ; Chételat, Didier ; Chmiela, Antonia ; Dumouchelle, Justin ; Ambros Gleixner ; Kazachkov, Aleksandr M ; Khalil, Elias ; Lichocki, Pawel ; Lodi, Andrea ; Lubin, Miles ; Maddison, Chris J ; Morris, Christopher ; Papageorgiou, Dimitri J ; Parjadis, Augustin ; Pokutta, Sebastian ; Prouvost, Antoine ; Scavuzzo, Lara ; Zarpellon, Giulia ; Yang, Linxin ; Lai, Sha ; Wang, Akang ; Luo, Xiaodong ; Zhou, Xiang ; Huang, Haohan ; Shao, Shengcheng ; Zhu, Yuanming ; Zhang, Dong ; Quan, Tao ; Cao, Zixuan ; Xu, Yang ; Huang, Zhewei ; Zhou, Shuchang ; Chen, Binbin ; He Minggui ; Hao, Hao ; Zhang, Zhiyu ; An Zhiwu ; Mao Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26370433463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Competition</topic><topic>Computer networks</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Solvers</topic><toplevel>online_resources</toplevel><creatorcontrib>Gasse, Maxime</creatorcontrib><creatorcontrib>Cappart, Quentin</creatorcontrib><creatorcontrib>Charfreitag, Jonas</creatorcontrib><creatorcontrib>Charlin, Laurent</creatorcontrib><creatorcontrib>Chételat, Didier</creatorcontrib><creatorcontrib>Chmiela, Antonia</creatorcontrib><creatorcontrib>Dumouchelle, Justin</creatorcontrib><creatorcontrib>Ambros Gleixner</creatorcontrib><creatorcontrib>Kazachkov, Aleksandr M</creatorcontrib><creatorcontrib>Khalil, Elias</creatorcontrib><creatorcontrib>Lichocki, Pawel</creatorcontrib><creatorcontrib>Lodi, Andrea</creatorcontrib><creatorcontrib>Lubin, Miles</creatorcontrib><creatorcontrib>Maddison, Chris J</creatorcontrib><creatorcontrib>Morris, Christopher</creatorcontrib><creatorcontrib>Papageorgiou, Dimitri J</creatorcontrib><creatorcontrib>Parjadis, Augustin</creatorcontrib><creatorcontrib>Pokutta, Sebastian</creatorcontrib><creatorcontrib>Prouvost, Antoine</creatorcontrib><creatorcontrib>Scavuzzo, Lara</creatorcontrib><creatorcontrib>Zarpellon, Giulia</creatorcontrib><creatorcontrib>Yang, Linxin</creatorcontrib><creatorcontrib>Lai, Sha</creatorcontrib><creatorcontrib>Wang, Akang</creatorcontrib><creatorcontrib>Luo, Xiaodong</creatorcontrib><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Huang, Haohan</creatorcontrib><creatorcontrib>Shao, Shengcheng</creatorcontrib><creatorcontrib>Zhu, Yuanming</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Quan, Tao</creatorcontrib><creatorcontrib>Cao, Zixuan</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Huang, Zhewei</creatorcontrib><creatorcontrib>Zhou, Shuchang</creatorcontrib><creatorcontrib>Chen, Binbin</creatorcontrib><creatorcontrib>He Minggui</creatorcontrib><creatorcontrib>Hao, Hao</creatorcontrib><creatorcontrib>Zhang, Zhiyu</creatorcontrib><creatorcontrib>An Zhiwu</creatorcontrib><creatorcontrib>Mao Kun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gasse, Maxime</au><au>Cappart, Quentin</au><au>Charfreitag, Jonas</au><au>Charlin, Laurent</au><au>Chételat, Didier</au><au>Chmiela, Antonia</au><au>Dumouchelle, Justin</au><au>Ambros Gleixner</au><au>Kazachkov, Aleksandr M</au><au>Khalil, Elias</au><au>Lichocki, Pawel</au><au>Lodi, Andrea</au><au>Lubin, Miles</au><au>Maddison, Chris J</au><au>Morris, Christopher</au><au>Papageorgiou, Dimitri J</au><au>Parjadis, Augustin</au><au>Pokutta, Sebastian</au><au>Prouvost, Antoine</au><au>Scavuzzo, Lara</au><au>Zarpellon, Giulia</au><au>Yang, Linxin</au><au>Lai, Sha</au><au>Wang, Akang</au><au>Luo, Xiaodong</au><au>Zhou, Xiang</au><au>Huang, Haohan</au><au>Shao, Shengcheng</au><au>Zhu, Yuanming</au><au>Zhang, Dong</au><au>Quan, Tao</au><au>Cao, Zixuan</au><au>Xu, Yang</au><au>Huang, Zhewei</au><au>Zhou, Shuchang</au><au>Chen, Binbin</au><au>He Minggui</au><au>Hao, Hao</au><au>Zhang, Zhiyu</au><au>An Zhiwu</au><au>Mao Kun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights</atitle><jtitle>arXiv.org</jtitle><date>2022-03-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2637043346 |
source | Free E- Journals |
subjects | Combinatorial analysis Competition Computer networks Datasets Machine learning Operations research Optimization Solvers |
title | The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Machine%20Learning%20for%20Combinatorial%20Optimization%20Competition%20(ML4CO):%20Results%20and%20Insights&rft.jtitle=arXiv.org&rft.au=Gasse,%20Maxime&rft.date=2022-03-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2637043346%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637043346&rft_id=info:pmid/&rfr_iscdi=true |