A theoretical framework for reliable predictions of thermal conductivity of multicomponent molten salt mixtures: KCl-NaCl-MgCl2 as a case study
The next generations of Concentrated Solar Thermal Power (CSTP) systems use anhydrous salts as the heat transfer fluid and thermal storage medium. Unfortunately, a severe lack of experimental data is observed for the thermal transport properties of molten salt mixtures, generating constraints in exp...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2022-03, Vol.236, p.1, Article 111478 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Solar energy materials and solar cells |
container_volume | 236 |
creator | Gheribi, Aïmen E. Phan, Anh Thu Chartrand, Patrice |
description | The next generations of Concentrated Solar Thermal Power (CSTP) systems use anhydrous salts as the heat transfer fluid and thermal storage medium. Unfortunately, a severe lack of experimental data is observed for the thermal transport properties of molten salt mixtures, generating constraints in exploring new potential materials for CSTP systems. The present paper presents a reliable theoretical framework for the prediction of both the thermal conductivity and thermal diffusivity of multicomponent molten salts. As a case study, the thermal conductivity of the NaCl-KCl-MgCl2 system is predicted as a function of temperature and composition. This system is considered as a one of the most promising thermal storage medium of the next generation of CSTP systems. The temperature dependent thermal conductivity of pure MgCl2 is formulated based on atomistic simulations via classical and Ab initio equilibrium molecular dynamics. Thereafter, to assess the predictive capability of the proposed methodology, the thermal conductivity and thermal diffusivity of KCl-MgCl2 and NaCl-KCl-MgCl2 molten mixtures are predicted as a function of both temperature and composition and compared to the available experimental data and the present first principles simulations. A good agreement is achieved with both experimental and first principle data, indicating the robustness of the proposed methodology.
•A Theoretical framework to predict the thermal conductivity of PCM from 298 K up to above the melting established.•The temperature dependent thermal conductivity of molten MgCl2 is re-assessed based on AIMD.•The thermal conductivity of NaCl-KCl-MgCl2 is predicted via Kinetic Theory and Equilibrium Molecular Dynamics.•The predicted capability of the proposed approach is demonstrated through comparison with most recent experimental data. |
doi_str_mv | 10.1016/j.solmat.2021.111478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2636860946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821005171</els_id><sourcerecordid>2636860946</sourcerecordid><originalsourceid>FETCH-LOGICAL-e238t-f90426bec6eda88095a42bce5ef8154ce4ac300d983fd398c8ae5f5f43130e43</originalsourceid><addsrcrecordid>eNotUctOwzAQtBBIlMcfcLDEOcWvpA4HJFTxEq9L75brrMHFiYvtAP0KfhlX5bK7Gs3OrmYQOqNkSgltLlbTFHyv85QRRqeUUjGTe2hC5aytOG_lPpqQls0qwoQ8REcprQghrOFign6vcX6HECE7oz22UffwHeIHtiHiCN7ppQe8jtA5k10YEg52uxH7wjZh6MYCf7m82eL96ItM6NdhgCHjPvgMA07al9n95DFCusSPc1-96FKe3-aeYZ2wxkYnwCmP3eYEHVjtE5z-92O0uL1ZzO-rp9e7h_n1UwWMy1zZlgjWLME00GkpSVtrwZYGarCS1sKA0IYT0rWS2644YKSG2tZWcMoJCH6Mzney6xg-R0hZrcIYh3JRFV8a2ZBWNIV1tWNB-eTLQVTJOBhMMSOCyaoLTlGithmoldploLYZqF0G_A_jRoAN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636860946</pqid></control><display><type>article</type><title>A theoretical framework for reliable predictions of thermal conductivity of multicomponent molten salt mixtures: KCl-NaCl-MgCl2 as a case study</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gheribi, Aïmen E. ; Phan, Anh Thu ; Chartrand, Patrice</creator><creatorcontrib>Gheribi, Aïmen E. ; Phan, Anh Thu ; Chartrand, Patrice</creatorcontrib><description>The next generations of Concentrated Solar Thermal Power (CSTP) systems use anhydrous salts as the heat transfer fluid and thermal storage medium. Unfortunately, a severe lack of experimental data is observed for the thermal transport properties of molten salt mixtures, generating constraints in exploring new potential materials for CSTP systems. The present paper presents a reliable theoretical framework for the prediction of both the thermal conductivity and thermal diffusivity of multicomponent molten salts. As a case study, the thermal conductivity of the NaCl-KCl-MgCl2 system is predicted as a function of temperature and composition. This system is considered as a one of the most promising thermal storage medium of the next generation of CSTP systems. The temperature dependent thermal conductivity of pure MgCl2 is formulated based on atomistic simulations via classical and Ab initio equilibrium molecular dynamics. Thereafter, to assess the predictive capability of the proposed methodology, the thermal conductivity and thermal diffusivity of KCl-MgCl2 and NaCl-KCl-MgCl2 molten mixtures are predicted as a function of both temperature and composition and compared to the available experimental data and the present first principles simulations. A good agreement is achieved with both experimental and first principle data, indicating the robustness of the proposed methodology.
•A Theoretical framework to predict the thermal conductivity of PCM from 298 K up to above the melting established.•The temperature dependent thermal conductivity of molten MgCl2 is re-assessed based on AIMD.•The thermal conductivity of NaCl-KCl-MgCl2 is predicted via Kinetic Theory and Equilibrium Molecular Dynamics.•The predicted capability of the proposed approach is demonstrated through comparison with most recent experimental data.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111478</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Case studies ; Composition ; Diffusivity ; Experimental data ; First principles ; First principles simulations ; Heat conductivity ; Heat transfer ; Magnesium chloride ; Methodology ; Molecular dynamics ; Molten salts ; NaCl-KCl-MgCl2 ; Phase change materials ; Potassium chloride ; Salts ; Sodium chloride ; Solar heating ; Solar power ; Temperature dependence ; Thermal conductivity ; Thermal diffusivity ; Thermal energy ; Thermal power ; Thermal storage ; Transport properties</subject><ispartof>Solar energy materials and solar cells, 2022-03, Vol.236, p.1, Article 111478</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5443-2277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2021.111478$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Gheribi, Aïmen E.</creatorcontrib><creatorcontrib>Phan, Anh Thu</creatorcontrib><creatorcontrib>Chartrand, Patrice</creatorcontrib><title>A theoretical framework for reliable predictions of thermal conductivity of multicomponent molten salt mixtures: KCl-NaCl-MgCl2 as a case study</title><title>Solar energy materials and solar cells</title><description>The next generations of Concentrated Solar Thermal Power (CSTP) systems use anhydrous salts as the heat transfer fluid and thermal storage medium. Unfortunately, a severe lack of experimental data is observed for the thermal transport properties of molten salt mixtures, generating constraints in exploring new potential materials for CSTP systems. The present paper presents a reliable theoretical framework for the prediction of both the thermal conductivity and thermal diffusivity of multicomponent molten salts. As a case study, the thermal conductivity of the NaCl-KCl-MgCl2 system is predicted as a function of temperature and composition. This system is considered as a one of the most promising thermal storage medium of the next generation of CSTP systems. The temperature dependent thermal conductivity of pure MgCl2 is formulated based on atomistic simulations via classical and Ab initio equilibrium molecular dynamics. Thereafter, to assess the predictive capability of the proposed methodology, the thermal conductivity and thermal diffusivity of KCl-MgCl2 and NaCl-KCl-MgCl2 molten mixtures are predicted as a function of both temperature and composition and compared to the available experimental data and the present first principles simulations. A good agreement is achieved with both experimental and first principle data, indicating the robustness of the proposed methodology.
•A Theoretical framework to predict the thermal conductivity of PCM from 298 K up to above the melting established.•The temperature dependent thermal conductivity of molten MgCl2 is re-assessed based on AIMD.•The thermal conductivity of NaCl-KCl-MgCl2 is predicted via Kinetic Theory and Equilibrium Molecular Dynamics.•The predicted capability of the proposed approach is demonstrated through comparison with most recent experimental data.</description><subject>Case studies</subject><subject>Composition</subject><subject>Diffusivity</subject><subject>Experimental data</subject><subject>First principles</subject><subject>First principles simulations</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Magnesium chloride</subject><subject>Methodology</subject><subject>Molecular dynamics</subject><subject>Molten salts</subject><subject>NaCl-KCl-MgCl2</subject><subject>Phase change materials</subject><subject>Potassium chloride</subject><subject>Salts</subject><subject>Sodium chloride</subject><subject>Solar heating</subject><subject>Solar power</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>Thermal energy</subject><subject>Thermal power</subject><subject>Thermal storage</subject><subject>Transport properties</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotUctOwzAQtBBIlMcfcLDEOcWvpA4HJFTxEq9L75brrMHFiYvtAP0KfhlX5bK7Gs3OrmYQOqNkSgltLlbTFHyv85QRRqeUUjGTe2hC5aytOG_lPpqQls0qwoQ8REcprQghrOFign6vcX6HECE7oz22UffwHeIHtiHiCN7ppQe8jtA5k10YEg52uxH7wjZh6MYCf7m82eL96ItM6NdhgCHjPvgMA07al9n95DFCusSPc1-96FKe3-aeYZ2wxkYnwCmP3eYEHVjtE5z-92O0uL1ZzO-rp9e7h_n1UwWMy1zZlgjWLME00GkpSVtrwZYGarCS1sKA0IYT0rWS2644YKSG2tZWcMoJCH6Mzney6xg-R0hZrcIYh3JRFV8a2ZBWNIV1tWNB-eTLQVTJOBhMMSOCyaoLTlGithmoldploLYZqF0G_A_jRoAN</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Gheribi, Aïmen E.</creator><creator>Phan, Anh Thu</creator><creator>Chartrand, Patrice</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5443-2277</orcidid></search><sort><creationdate>202203</creationdate><title>A theoretical framework for reliable predictions of thermal conductivity of multicomponent molten salt mixtures: KCl-NaCl-MgCl2 as a case study</title><author>Gheribi, Aïmen E. ; Phan, Anh Thu ; Chartrand, Patrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e238t-f90426bec6eda88095a42bce5ef8154ce4ac300d983fd398c8ae5f5f43130e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Case studies</topic><topic>Composition</topic><topic>Diffusivity</topic><topic>Experimental data</topic><topic>First principles</topic><topic>First principles simulations</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Magnesium chloride</topic><topic>Methodology</topic><topic>Molecular dynamics</topic><topic>Molten salts</topic><topic>NaCl-KCl-MgCl2</topic><topic>Phase change materials</topic><topic>Potassium chloride</topic><topic>Salts</topic><topic>Sodium chloride</topic><topic>Solar heating</topic><topic>Solar power</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>Thermal energy</topic><topic>Thermal power</topic><topic>Thermal storage</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gheribi, Aïmen E.</creatorcontrib><creatorcontrib>Phan, Anh Thu</creatorcontrib><creatorcontrib>Chartrand, Patrice</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gheribi, Aïmen E.</au><au>Phan, Anh Thu</au><au>Chartrand, Patrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theoretical framework for reliable predictions of thermal conductivity of multicomponent molten salt mixtures: KCl-NaCl-MgCl2 as a case study</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-03</date><risdate>2022</risdate><volume>236</volume><spage>1</spage><pages>1-</pages><artnum>111478</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The next generations of Concentrated Solar Thermal Power (CSTP) systems use anhydrous salts as the heat transfer fluid and thermal storage medium. Unfortunately, a severe lack of experimental data is observed for the thermal transport properties of molten salt mixtures, generating constraints in exploring new potential materials for CSTP systems. The present paper presents a reliable theoretical framework for the prediction of both the thermal conductivity and thermal diffusivity of multicomponent molten salts. As a case study, the thermal conductivity of the NaCl-KCl-MgCl2 system is predicted as a function of temperature and composition. This system is considered as a one of the most promising thermal storage medium of the next generation of CSTP systems. The temperature dependent thermal conductivity of pure MgCl2 is formulated based on atomistic simulations via classical and Ab initio equilibrium molecular dynamics. Thereafter, to assess the predictive capability of the proposed methodology, the thermal conductivity and thermal diffusivity of KCl-MgCl2 and NaCl-KCl-MgCl2 molten mixtures are predicted as a function of both temperature and composition and compared to the available experimental data and the present first principles simulations. A good agreement is achieved with both experimental and first principle data, indicating the robustness of the proposed methodology.
•A Theoretical framework to predict the thermal conductivity of PCM from 298 K up to above the melting established.•The temperature dependent thermal conductivity of molten MgCl2 is re-assessed based on AIMD.•The thermal conductivity of NaCl-KCl-MgCl2 is predicted via Kinetic Theory and Equilibrium Molecular Dynamics.•The predicted capability of the proposed approach is demonstrated through comparison with most recent experimental data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111478</doi><orcidid>https://orcid.org/0000-0002-5443-2277</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2022-03, Vol.236, p.1, Article 111478 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2636860946 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Case studies Composition Diffusivity Experimental data First principles First principles simulations Heat conductivity Heat transfer Magnesium chloride Methodology Molecular dynamics Molten salts NaCl-KCl-MgCl2 Phase change materials Potassium chloride Salts Sodium chloride Solar heating Solar power Temperature dependence Thermal conductivity Thermal diffusivity Thermal energy Thermal power Thermal storage Transport properties |
title | A theoretical framework for reliable predictions of thermal conductivity of multicomponent molten salt mixtures: KCl-NaCl-MgCl2 as a case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theoretical%20framework%20for%20reliable%20predictions%20of%20thermal%20conductivity%20of%20multicomponent%20molten%20salt%20mixtures:%20KCl-NaCl-MgCl2%20as%20a%20case%20study&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Gheribi,%20A%C3%AFmen%20E.&rft.date=2022-03&rft.volume=236&rft.spage=1&rft.pages=1-&rft.artnum=111478&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111478&rft_dat=%3Cproquest_elsev%3E2636860946%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636860946&rft_id=info:pmid/&rft_els_id=S0927024821005171&rfr_iscdi=true |