Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery
Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxyge...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2022-03, Vol.134 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 134 |
creator | Zhu, Zhuo Lv, Qingliang Ni, Youxuan Gao, Suning Geng, Jiarun Liang, Jing Li, Fujun |
description | Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxygen redox for a visible‐light‐involved Li–O2 battery. The internal electric field and interfacial Fe−N bonding in the heterojunction boost the separation and directional migration of photo‐carriers to establish spatially isolated redox centers, at which the photoelectrons on C3N4 and holes on Fe2O3 remarkably accelerate the discharge and charge kinetics. These enable the Li–O2 battery with Fe2O3/C3N4 to present an elevated discharge voltage of 3.13 V under illumination, higher than the equilibrium potential 2.96 V in the dark, and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. This work will shed light on rational cathode design for metal–O2 batteries.
The internal electric field and interfacial Fe−N bonding in S‐scheme Fe2O3/C3N4 significantly boosts the separation and directional migration of photo‐excited carriers to establish spatially isolated redox centers. These enable the light‐involved Li–O2 battery with a Fe2O3/C3N4 cathode to present an elevated discharge voltage of 3.13 V under illumination and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. |
doi_str_mv | 10.1002/ange.202116699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636347549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636347549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2289-bc34efc9a235aea0c58a6d3a8429c309a782b256329838ce85ba197c4d3d1a233</originalsourceid><addsrcrecordid>eNqFkEtPwkAUhSdGExHdup7EdXEefc0SCCCmkQXqtplOb8uQMsVpQbtj78bEf8gvsYjRpauzOOe7N_kQuqakRwlht9Lk0GOEUer7QpygDvUYdXjgBaeoQ4jrOiFzxTm6qKolIcRngeig96mpwRpZ4FEBqrZa4bGGIsXSpPi7y6TSbT0oTapNjkcm1wbAQornNaz3u4-5WsAK8P3GqFqXBmelxRI_60onBbR9pPNF3ebUbMti23KRrhd6s9rvPmdvTQ4GD2TdPmou0VkmiwqufrKLnsajx-GdE80m02E_chRjoXASxV3IlJCMexIkUV4o_ZTL0GVCcSJkELKEeT5nIuShgtBLJBWBclOe0hbiXXRzvLu25csGqjpelpuDgypmPve5G3iuaFe940rZsqosZPHa6pW0TUxJfBAeH4THv8JbQByBV11A88867j9MRn_sFzDmimE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636347549</pqid></control><display><type>article</type><title>Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Zhuo ; Lv, Qingliang ; Ni, Youxuan ; Gao, Suning ; Geng, Jiarun ; Liang, Jing ; Li, Fujun</creator><creatorcontrib>Zhu, Zhuo ; Lv, Qingliang ; Ni, Youxuan ; Gao, Suning ; Geng, Jiarun ; Liang, Jing ; Li, Fujun</creatorcontrib><description>Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxygen redox for a visible‐light‐involved Li–O2 battery. The internal electric field and interfacial Fe−N bonding in the heterojunction boost the separation and directional migration of photo‐carriers to establish spatially isolated redox centers, at which the photoelectrons on C3N4 and holes on Fe2O3 remarkably accelerate the discharge and charge kinetics. These enable the Li–O2 battery with Fe2O3/C3N4 to present an elevated discharge voltage of 3.13 V under illumination, higher than the equilibrium potential 2.96 V in the dark, and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. This work will shed light on rational cathode design for metal–O2 batteries.
The internal electric field and interfacial Fe−N bonding in S‐scheme Fe2O3/C3N4 significantly boosts the separation and directional migration of photo‐excited carriers to establish spatially isolated redox centers. These enable the light‐involved Li–O2 battery with a Fe2O3/C3N4 cathode to present an elevated discharge voltage of 3.13 V under illumination and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202116699</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Carbon nitride ; Catalysts ; Cathodes ; Chemistry ; Discharge ; Electric fields ; Ferric oxide ; Hematite ; Heterojunctions ; Interface Interaction ; Interfacial bonding ; Internal Electric Field ; Lithium ; Li–O2 Battery ; Oxygen ; Photoelectrons ; S-Scheme Junction ; Visible Light ; Voltage</subject><ispartof>Angewandte Chemie, 2022-03, Vol.134 (12), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2289-bc34efc9a235aea0c58a6d3a8429c309a782b256329838ce85ba197c4d3d1a233</citedby><cites>FETCH-LOGICAL-c2289-bc34efc9a235aea0c58a6d3a8429c309a782b256329838ce85ba197c4d3d1a233</cites><orcidid>0000-0002-1298-0267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202116699$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202116699$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Zhu, Zhuo</creatorcontrib><creatorcontrib>Lv, Qingliang</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Gao, Suning</creatorcontrib><creatorcontrib>Geng, Jiarun</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Li, Fujun</creatorcontrib><title>Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery</title><title>Angewandte Chemie</title><description>Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxygen redox for a visible‐light‐involved Li–O2 battery. The internal electric field and interfacial Fe−N bonding in the heterojunction boost the separation and directional migration of photo‐carriers to establish spatially isolated redox centers, at which the photoelectrons on C3N4 and holes on Fe2O3 remarkably accelerate the discharge and charge kinetics. These enable the Li–O2 battery with Fe2O3/C3N4 to present an elevated discharge voltage of 3.13 V under illumination, higher than the equilibrium potential 2.96 V in the dark, and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. This work will shed light on rational cathode design for metal–O2 batteries.
The internal electric field and interfacial Fe−N bonding in S‐scheme Fe2O3/C3N4 significantly boosts the separation and directional migration of photo‐excited carriers to establish spatially isolated redox centers. These enable the light‐involved Li–O2 battery with a Fe2O3/C3N4 cathode to present an elevated discharge voltage of 3.13 V under illumination and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability.</description><subject>Batteries</subject><subject>Carbon nitride</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Discharge</subject><subject>Electric fields</subject><subject>Ferric oxide</subject><subject>Hematite</subject><subject>Heterojunctions</subject><subject>Interface Interaction</subject><subject>Interfacial bonding</subject><subject>Internal Electric Field</subject><subject>Lithium</subject><subject>Li–O2 Battery</subject><subject>Oxygen</subject><subject>Photoelectrons</subject><subject>S-Scheme Junction</subject><subject>Visible Light</subject><subject>Voltage</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwkAUhSdGExHdup7EdXEefc0SCCCmkQXqtplOb8uQMsVpQbtj78bEf8gvsYjRpauzOOe7N_kQuqakRwlht9Lk0GOEUer7QpygDvUYdXjgBaeoQ4jrOiFzxTm6qKolIcRngeig96mpwRpZ4FEBqrZa4bGGIsXSpPi7y6TSbT0oTapNjkcm1wbAQornNaz3u4-5WsAK8P3GqFqXBmelxRI_60onBbR9pPNF3ebUbMti23KRrhd6s9rvPmdvTQ4GD2TdPmou0VkmiwqufrKLnsajx-GdE80m02E_chRjoXASxV3IlJCMexIkUV4o_ZTL0GVCcSJkELKEeT5nIuShgtBLJBWBclOe0hbiXXRzvLu25csGqjpelpuDgypmPve5G3iuaFe940rZsqosZPHa6pW0TUxJfBAeH4THv8JbQByBV11A88867j9MRn_sFzDmimE</recordid><startdate>20220314</startdate><enddate>20220314</enddate><creator>Zhu, Zhuo</creator><creator>Lv, Qingliang</creator><creator>Ni, Youxuan</creator><creator>Gao, Suning</creator><creator>Geng, Jiarun</creator><creator>Liang, Jing</creator><creator>Li, Fujun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1298-0267</orcidid></search><sort><creationdate>20220314</creationdate><title>Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery</title><author>Zhu, Zhuo ; Lv, Qingliang ; Ni, Youxuan ; Gao, Suning ; Geng, Jiarun ; Liang, Jing ; Li, Fujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2289-bc34efc9a235aea0c58a6d3a8429c309a782b256329838ce85ba197c4d3d1a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Carbon nitride</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Discharge</topic><topic>Electric fields</topic><topic>Ferric oxide</topic><topic>Hematite</topic><topic>Heterojunctions</topic><topic>Interface Interaction</topic><topic>Interfacial bonding</topic><topic>Internal Electric Field</topic><topic>Lithium</topic><topic>Li–O2 Battery</topic><topic>Oxygen</topic><topic>Photoelectrons</topic><topic>S-Scheme Junction</topic><topic>Visible Light</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhuo</creatorcontrib><creatorcontrib>Lv, Qingliang</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Gao, Suning</creatorcontrib><creatorcontrib>Geng, Jiarun</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Li, Fujun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhuo</au><au>Lv, Qingliang</au><au>Ni, Youxuan</au><au>Gao, Suning</au><au>Geng, Jiarun</au><au>Liang, Jing</au><au>Li, Fujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-03-14</date><risdate>2022</risdate><volume>134</volume><issue>12</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxygen redox for a visible‐light‐involved Li–O2 battery. The internal electric field and interfacial Fe−N bonding in the heterojunction boost the separation and directional migration of photo‐carriers to establish spatially isolated redox centers, at which the photoelectrons on C3N4 and holes on Fe2O3 remarkably accelerate the discharge and charge kinetics. These enable the Li–O2 battery with Fe2O3/C3N4 to present an elevated discharge voltage of 3.13 V under illumination, higher than the equilibrium potential 2.96 V in the dark, and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. This work will shed light on rational cathode design for metal–O2 batteries.
The internal electric field and interfacial Fe−N bonding in S‐scheme Fe2O3/C3N4 significantly boosts the separation and directional migration of photo‐excited carriers to establish spatially isolated redox centers. These enable the light‐involved Li–O2 battery with a Fe2O3/C3N4 cathode to present an elevated discharge voltage of 3.13 V under illumination and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202116699</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1298-0267</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2022-03, Vol.134 (12), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2636347549 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Batteries Carbon nitride Catalysts Cathodes Chemistry Discharge Electric fields Ferric oxide Hematite Heterojunctions Interface Interaction Interfacial bonding Internal Electric Field Lithium Li–O2 Battery Oxygen Photoelectrons S-Scheme Junction Visible Light Voltage |
title | Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Electric%20Field%20and%20Interfacial%20Bonding%20Engineered%20Step%E2%80%90Scheme%20Junction%20for%20a%20Visible%E2%80%90Light%E2%80%90Involved%20Lithium%E2%80%93Oxygen%20Battery&rft.jtitle=Angewandte%20Chemie&rft.au=Zhu,%20Zhuo&rft.date=2022-03-14&rft.volume=134&rft.issue=12&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202116699&rft_dat=%3Cproquest_cross%3E2636347549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636347549&rft_id=info:pmid/&rfr_iscdi=true |