Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery

Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxyge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2022-03, Vol.134 (12), p.n/a
Hauptverfasser: Zhu, Zhuo, Lv, Qingliang, Ni, Youxuan, Gao, Suning, Geng, Jiarun, Liang, Jing, Li, Fujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Angewandte Chemie
container_volume 134
creator Zhu, Zhuo
Lv, Qingliang
Ni, Youxuan
Gao, Suning
Geng, Jiarun
Liang, Jing
Li, Fujun
description Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxygen redox for a visible‐light‐involved Li–O2 battery. The internal electric field and interfacial Fe−N bonding in the heterojunction boost the separation and directional migration of photo‐carriers to establish spatially isolated redox centers, at which the photoelectrons on C3N4 and holes on Fe2O3 remarkably accelerate the discharge and charge kinetics. These enable the Li–O2 battery with Fe2O3/C3N4 to present an elevated discharge voltage of 3.13 V under illumination, higher than the equilibrium potential 2.96 V in the dark, and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. This work will shed light on rational cathode design for metal–O2 batteries. The internal electric field and interfacial Fe−N bonding in S‐scheme Fe2O3/C3N4 significantly boosts the separation and directional migration of photo‐excited carriers to establish spatially isolated redox centers. These enable the light‐involved Li–O2 battery with a Fe2O3/C3N4 cathode to present an elevated discharge voltage of 3.13 V under illumination and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability.
doi_str_mv 10.1002/ange.202116699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636347549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636347549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2289-bc34efc9a235aea0c58a6d3a8429c309a782b256329838ce85ba197c4d3d1a233</originalsourceid><addsrcrecordid>eNqFkEtPwkAUhSdGExHdup7EdXEefc0SCCCmkQXqtplOb8uQMsVpQbtj78bEf8gvsYjRpauzOOe7N_kQuqakRwlht9Lk0GOEUer7QpygDvUYdXjgBaeoQ4jrOiFzxTm6qKolIcRngeig96mpwRpZ4FEBqrZa4bGGIsXSpPi7y6TSbT0oTapNjkcm1wbAQornNaz3u4-5WsAK8P3GqFqXBmelxRI_60onBbR9pPNF3ebUbMti23KRrhd6s9rvPmdvTQ4GD2TdPmou0VkmiwqufrKLnsajx-GdE80m02E_chRjoXASxV3IlJCMexIkUV4o_ZTL0GVCcSJkELKEeT5nIuShgtBLJBWBclOe0hbiXXRzvLu25csGqjpelpuDgypmPve5G3iuaFe940rZsqosZPHa6pW0TUxJfBAeH4THv8JbQByBV11A88867j9MRn_sFzDmimE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636347549</pqid></control><display><type>article</type><title>Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Zhuo ; Lv, Qingliang ; Ni, Youxuan ; Gao, Suning ; Geng, Jiarun ; Liang, Jing ; Li, Fujun</creator><creatorcontrib>Zhu, Zhuo ; Lv, Qingliang ; Ni, Youxuan ; Gao, Suning ; Geng, Jiarun ; Liang, Jing ; Li, Fujun</creatorcontrib><description>Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxygen redox for a visible‐light‐involved Li–O2 battery. The internal electric field and interfacial Fe−N bonding in the heterojunction boost the separation and directional migration of photo‐carriers to establish spatially isolated redox centers, at which the photoelectrons on C3N4 and holes on Fe2O3 remarkably accelerate the discharge and charge kinetics. These enable the Li–O2 battery with Fe2O3/C3N4 to present an elevated discharge voltage of 3.13 V under illumination, higher than the equilibrium potential 2.96 V in the dark, and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. This work will shed light on rational cathode design for metal–O2 batteries. The internal electric field and interfacial Fe−N bonding in S‐scheme Fe2O3/C3N4 significantly boosts the separation and directional migration of photo‐excited carriers to establish spatially isolated redox centers. These enable the light‐involved Li–O2 battery with a Fe2O3/C3N4 cathode to present an elevated discharge voltage of 3.13 V under illumination and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202116699</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Carbon nitride ; Catalysts ; Cathodes ; Chemistry ; Discharge ; Electric fields ; Ferric oxide ; Hematite ; Heterojunctions ; Interface Interaction ; Interfacial bonding ; Internal Electric Field ; Lithium ; Li–O2 Battery ; Oxygen ; Photoelectrons ; S-Scheme Junction ; Visible Light ; Voltage</subject><ispartof>Angewandte Chemie, 2022-03, Vol.134 (12), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2289-bc34efc9a235aea0c58a6d3a8429c309a782b256329838ce85ba197c4d3d1a233</citedby><cites>FETCH-LOGICAL-c2289-bc34efc9a235aea0c58a6d3a8429c309a782b256329838ce85ba197c4d3d1a233</cites><orcidid>0000-0002-1298-0267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202116699$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202116699$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Zhu, Zhuo</creatorcontrib><creatorcontrib>Lv, Qingliang</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Gao, Suning</creatorcontrib><creatorcontrib>Geng, Jiarun</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Li, Fujun</creatorcontrib><title>Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery</title><title>Angewandte Chemie</title><description>Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxygen redox for a visible‐light‐involved Li–O2 battery. The internal electric field and interfacial Fe−N bonding in the heterojunction boost the separation and directional migration of photo‐carriers to establish spatially isolated redox centers, at which the photoelectrons on C3N4 and holes on Fe2O3 remarkably accelerate the discharge and charge kinetics. These enable the Li–O2 battery with Fe2O3/C3N4 to present an elevated discharge voltage of 3.13 V under illumination, higher than the equilibrium potential 2.96 V in the dark, and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. This work will shed light on rational cathode design for metal–O2 batteries. The internal electric field and interfacial Fe−N bonding in S‐scheme Fe2O3/C3N4 significantly boosts the separation and directional migration of photo‐excited carriers to establish spatially isolated redox centers. These enable the light‐involved Li–O2 battery with a Fe2O3/C3N4 cathode to present an elevated discharge voltage of 3.13 V under illumination and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability.</description><subject>Batteries</subject><subject>Carbon nitride</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Discharge</subject><subject>Electric fields</subject><subject>Ferric oxide</subject><subject>Hematite</subject><subject>Heterojunctions</subject><subject>Interface Interaction</subject><subject>Interfacial bonding</subject><subject>Internal Electric Field</subject><subject>Lithium</subject><subject>Li–O2 Battery</subject><subject>Oxygen</subject><subject>Photoelectrons</subject><subject>S-Scheme Junction</subject><subject>Visible Light</subject><subject>Voltage</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwkAUhSdGExHdup7EdXEefc0SCCCmkQXqtplOb8uQMsVpQbtj78bEf8gvsYjRpauzOOe7N_kQuqakRwlht9Lk0GOEUer7QpygDvUYdXjgBaeoQ4jrOiFzxTm6qKolIcRngeig96mpwRpZ4FEBqrZa4bGGIsXSpPi7y6TSbT0oTapNjkcm1wbAQornNaz3u4-5WsAK8P3GqFqXBmelxRI_60onBbR9pPNF3ebUbMti23KRrhd6s9rvPmdvTQ4GD2TdPmou0VkmiwqufrKLnsajx-GdE80m02E_chRjoXASxV3IlJCMexIkUV4o_ZTL0GVCcSJkELKEeT5nIuShgtBLJBWBclOe0hbiXXRzvLu25csGqjpelpuDgypmPve5G3iuaFe940rZsqosZPHa6pW0TUxJfBAeH4THv8JbQByBV11A88867j9MRn_sFzDmimE</recordid><startdate>20220314</startdate><enddate>20220314</enddate><creator>Zhu, Zhuo</creator><creator>Lv, Qingliang</creator><creator>Ni, Youxuan</creator><creator>Gao, Suning</creator><creator>Geng, Jiarun</creator><creator>Liang, Jing</creator><creator>Li, Fujun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1298-0267</orcidid></search><sort><creationdate>20220314</creationdate><title>Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery</title><author>Zhu, Zhuo ; Lv, Qingliang ; Ni, Youxuan ; Gao, Suning ; Geng, Jiarun ; Liang, Jing ; Li, Fujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2289-bc34efc9a235aea0c58a6d3a8429c309a782b256329838ce85ba197c4d3d1a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Carbon nitride</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Discharge</topic><topic>Electric fields</topic><topic>Ferric oxide</topic><topic>Hematite</topic><topic>Heterojunctions</topic><topic>Interface Interaction</topic><topic>Interfacial bonding</topic><topic>Internal Electric Field</topic><topic>Lithium</topic><topic>Li–O2 Battery</topic><topic>Oxygen</topic><topic>Photoelectrons</topic><topic>S-Scheme Junction</topic><topic>Visible Light</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhuo</creatorcontrib><creatorcontrib>Lv, Qingliang</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Gao, Suning</creatorcontrib><creatorcontrib>Geng, Jiarun</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Li, Fujun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhuo</au><au>Lv, Qingliang</au><au>Ni, Youxuan</au><au>Gao, Suning</au><au>Geng, Jiarun</au><au>Liang, Jing</au><au>Li, Fujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-03-14</date><risdate>2022</risdate><volume>134</volume><issue>12</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Li–O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step‐scheme (S‐scheme) junction with hematite on carbon nitride (Fe2O3/C3N4) is designed as a bifunctional catalyst to facilitate oxygen redox for a visible‐light‐involved Li–O2 battery. The internal electric field and interfacial Fe−N bonding in the heterojunction boost the separation and directional migration of photo‐carriers to establish spatially isolated redox centers, at which the photoelectrons on C3N4 and holes on Fe2O3 remarkably accelerate the discharge and charge kinetics. These enable the Li–O2 battery with Fe2O3/C3N4 to present an elevated discharge voltage of 3.13 V under illumination, higher than the equilibrium potential 2.96 V in the dark, and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. This work will shed light on rational cathode design for metal–O2 batteries. The internal electric field and interfacial Fe−N bonding in S‐scheme Fe2O3/C3N4 significantly boosts the separation and directional migration of photo‐excited carriers to establish spatially isolated redox centers. These enable the light‐involved Li–O2 battery with a Fe2O3/C3N4 cathode to present an elevated discharge voltage of 3.13 V under illumination and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202116699</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1298-0267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2022-03, Vol.134 (12), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2636347549
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Carbon nitride
Catalysts
Cathodes
Chemistry
Discharge
Electric fields
Ferric oxide
Hematite
Heterojunctions
Interface Interaction
Interfacial bonding
Internal Electric Field
Lithium
Li–O2 Battery
Oxygen
Photoelectrons
S-Scheme Junction
Visible Light
Voltage
title Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for a Visible‐Light‐Involved Lithium–Oxygen Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Electric%20Field%20and%20Interfacial%20Bonding%20Engineered%20Step%E2%80%90Scheme%20Junction%20for%20a%20Visible%E2%80%90Light%E2%80%90Involved%20Lithium%E2%80%93Oxygen%20Battery&rft.jtitle=Angewandte%20Chemie&rft.au=Zhu,%20Zhuo&rft.date=2022-03-14&rft.volume=134&rft.issue=12&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202116699&rft_dat=%3Cproquest_cross%3E2636347549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636347549&rft_id=info:pmid/&rfr_iscdi=true