A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators

In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2022-03, Vol.45 (5), p.2530-2541
Hauptverfasser: Varun Bose, C. S., Udhayakumar, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2541
container_issue 5
container_start_page 2530
container_title Mathematical methods in the applied sciences
container_volume 45
creator Varun Bose, C. S.
Udhayakumar, R.
description In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary results. Finally, an example is presented to demonstrate the theory obtained.
doi_str_mv 10.1002/mma.7938
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636176093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636176093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-5ce1a9a86c1e556515aee36a067657486c3cb20959324dfae875cecc76bfdd423</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1f3aT3WMpaoUWL3oOaXZCU3Y3NUmp_fZmrVdPM_PmN8PjIXRPyYwSwp76Xs9kw-sLNKGkaQpaSnGJJoRKUpSMltfoJsYdIaSmlE1QO8eDT4D9gNMWMHy7mGAwWbB46ToLAdugTXJ-0B1unc0KDMnlwQ2mO8S8iPjo0hbrrvcx4Qgm-TACfg9B5z7eoiuruwh3f3WKPl-ePxbLYvX--raYrwrDsuOiMkB1o2thKFSVqGilAbjQREhRyTLr3GwYaaqGs7K1GmqZT4yRYmPbtmR8ih7Of_fBfx0gJrXzh5CNR8UEF1QK0vBMPZ4pE3yMAazaB9frcFKUqDFDlTNUY4YZLc7o0XVw-pdT6_X8l_8BhvBz3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636176093</pqid></control><display><type>article</type><title>A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Varun Bose, C. S. ; Udhayakumar, R.</creator><creatorcontrib>Varun Bose, C. S. ; Udhayakumar, R.</creatorcontrib><description>In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary results. Finally, an example is presented to demonstrate the theory obtained.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7938</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>almost sectorial operators ; existence ; fixed point theorem ; Fixed points (mathematics) ; Fractional calculus ; Hilfer fractional system ; Inclusions ; mild solution ; Operators (mathematics)</subject><ispartof>Mathematical methods in the applied sciences, 2022-03, Vol.45 (5), p.2530-2541</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-5ce1a9a86c1e556515aee36a067657486c3cb20959324dfae875cecc76bfdd423</citedby><cites>FETCH-LOGICAL-c2938-5ce1a9a86c1e556515aee36a067657486c3cb20959324dfae875cecc76bfdd423</cites><orcidid>0000-0002-7020-3466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7938$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7938$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Varun Bose, C. S.</creatorcontrib><creatorcontrib>Udhayakumar, R.</creatorcontrib><title>A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary results. Finally, an example is presented to demonstrate the theory obtained.</description><subject>almost sectorial operators</subject><subject>existence</subject><subject>fixed point theorem</subject><subject>Fixed points (mathematics)</subject><subject>Fractional calculus</subject><subject>Hilfer fractional system</subject><subject>Inclusions</subject><subject>mild solution</subject><subject>Operators (mathematics)</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1f3aT3WMpaoUWL3oOaXZCU3Y3NUmp_fZmrVdPM_PmN8PjIXRPyYwSwp76Xs9kw-sLNKGkaQpaSnGJJoRKUpSMltfoJsYdIaSmlE1QO8eDT4D9gNMWMHy7mGAwWbB46ToLAdugTXJ-0B1unc0KDMnlwQ2mO8S8iPjo0hbrrvcx4Qgm-TACfg9B5z7eoiuruwh3f3WKPl-ePxbLYvX--raYrwrDsuOiMkB1o2thKFSVqGilAbjQREhRyTLr3GwYaaqGs7K1GmqZT4yRYmPbtmR8ih7Of_fBfx0gJrXzh5CNR8UEF1QK0vBMPZ4pE3yMAazaB9frcFKUqDFDlTNUY4YZLc7o0XVw-pdT6_X8l_8BhvBz3A</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Varun Bose, C. S.</creator><creator>Udhayakumar, R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7020-3466</orcidid></search><sort><creationdate>20220330</creationdate><title>A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators</title><author>Varun Bose, C. S. ; Udhayakumar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-5ce1a9a86c1e556515aee36a067657486c3cb20959324dfae875cecc76bfdd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>almost sectorial operators</topic><topic>existence</topic><topic>fixed point theorem</topic><topic>Fixed points (mathematics)</topic><topic>Fractional calculus</topic><topic>Hilfer fractional system</topic><topic>Inclusions</topic><topic>mild solution</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varun Bose, C. S.</creatorcontrib><creatorcontrib>Udhayakumar, R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varun Bose, C. S.</au><au>Udhayakumar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-03-30</date><risdate>2022</risdate><volume>45</volume><issue>5</issue><spage>2530</spage><epage>2541</epage><pages>2530-2541</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary results. Finally, an example is presented to demonstrate the theory obtained.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7938</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7020-3466</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2022-03, Vol.45 (5), p.2530-2541
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2636176093
source Wiley Online Library Journals Frontfile Complete
subjects almost sectorial operators
existence
fixed point theorem
Fixed points (mathematics)
Fractional calculus
Hilfer fractional system
Inclusions
mild solution
Operators (mathematics)
title A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20the%20existence%20of%20Hilfer%20fractional%20differential%20inclusions%20with%20almost%20sectorial%20operators&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Varun%20Bose,%20C.%20S.&rft.date=2022-03-30&rft.volume=45&rft.issue=5&rft.spage=2530&rft.epage=2541&rft.pages=2530-2541&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7938&rft_dat=%3Cproquest_cross%3E2636176093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636176093&rft_id=info:pmid/&rfr_iscdi=true