A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators
In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary r...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2022-03, Vol.45 (5), p.2530-2541 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2541 |
---|---|
container_issue | 5 |
container_start_page | 2530 |
container_title | Mathematical methods in the applied sciences |
container_volume | 45 |
creator | Varun Bose, C. S. Udhayakumar, R. |
description | In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary results. Finally, an example is presented to demonstrate the theory obtained. |
doi_str_mv | 10.1002/mma.7938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636176093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636176093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-5ce1a9a86c1e556515aee36a067657486c3cb20959324dfae875cecc76bfdd423</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1f3aT3WMpaoUWL3oOaXZCU3Y3NUmp_fZmrVdPM_PmN8PjIXRPyYwSwp76Xs9kw-sLNKGkaQpaSnGJJoRKUpSMltfoJsYdIaSmlE1QO8eDT4D9gNMWMHy7mGAwWbB46ToLAdugTXJ-0B1unc0KDMnlwQ2mO8S8iPjo0hbrrvcx4Qgm-TACfg9B5z7eoiuruwh3f3WKPl-ePxbLYvX--raYrwrDsuOiMkB1o2thKFSVqGilAbjQREhRyTLr3GwYaaqGs7K1GmqZT4yRYmPbtmR8ih7Of_fBfx0gJrXzh5CNR8UEF1QK0vBMPZ4pE3yMAazaB9frcFKUqDFDlTNUY4YZLc7o0XVw-pdT6_X8l_8BhvBz3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636176093</pqid></control><display><type>article</type><title>A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Varun Bose, C. S. ; Udhayakumar, R.</creator><creatorcontrib>Varun Bose, C. S. ; Udhayakumar, R.</creatorcontrib><description>In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary results. Finally, an example is presented to demonstrate the theory obtained.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7938</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>almost sectorial operators ; existence ; fixed point theorem ; Fixed points (mathematics) ; Fractional calculus ; Hilfer fractional system ; Inclusions ; mild solution ; Operators (mathematics)</subject><ispartof>Mathematical methods in the applied sciences, 2022-03, Vol.45 (5), p.2530-2541</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-5ce1a9a86c1e556515aee36a067657486c3cb20959324dfae875cecc76bfdd423</citedby><cites>FETCH-LOGICAL-c2938-5ce1a9a86c1e556515aee36a067657486c3cb20959324dfae875cecc76bfdd423</cites><orcidid>0000-0002-7020-3466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7938$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7938$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Varun Bose, C. S.</creatorcontrib><creatorcontrib>Udhayakumar, R.</creatorcontrib><title>A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary results. Finally, an example is presented to demonstrate the theory obtained.</description><subject>almost sectorial operators</subject><subject>existence</subject><subject>fixed point theorem</subject><subject>Fixed points (mathematics)</subject><subject>Fractional calculus</subject><subject>Hilfer fractional system</subject><subject>Inclusions</subject><subject>mild solution</subject><subject>Operators (mathematics)</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1f3aT3WMpaoUWL3oOaXZCU3Y3NUmp_fZmrVdPM_PmN8PjIXRPyYwSwp76Xs9kw-sLNKGkaQpaSnGJJoRKUpSMltfoJsYdIaSmlE1QO8eDT4D9gNMWMHy7mGAwWbB46ToLAdugTXJ-0B1unc0KDMnlwQ2mO8S8iPjo0hbrrvcx4Qgm-TACfg9B5z7eoiuruwh3f3WKPl-ePxbLYvX--raYrwrDsuOiMkB1o2thKFSVqGilAbjQREhRyTLr3GwYaaqGs7K1GmqZT4yRYmPbtmR8ih7Of_fBfx0gJrXzh5CNR8UEF1QK0vBMPZ4pE3yMAazaB9frcFKUqDFDlTNUY4YZLc7o0XVw-pdT6_X8l_8BhvBz3A</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Varun Bose, C. S.</creator><creator>Udhayakumar, R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7020-3466</orcidid></search><sort><creationdate>20220330</creationdate><title>A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators</title><author>Varun Bose, C. S. ; Udhayakumar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-5ce1a9a86c1e556515aee36a067657486c3cb20959324dfae875cecc76bfdd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>almost sectorial operators</topic><topic>existence</topic><topic>fixed point theorem</topic><topic>Fixed points (mathematics)</topic><topic>Fractional calculus</topic><topic>Hilfer fractional system</topic><topic>Inclusions</topic><topic>mild solution</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varun Bose, C. S.</creatorcontrib><creatorcontrib>Udhayakumar, R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varun Bose, C. S.</au><au>Udhayakumar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-03-30</date><risdate>2022</risdate><volume>45</volume><issue>5</issue><spage>2530</spage><epage>2541</epage><pages>2530-2541</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we mainly focus on the existence of the mild solution for the Hilfer fractional differential inclusions with almost sectorial operators. By using the results on the fractional calculus, sectorial operators, semigroup theory, and Dhage's fixed point theorem, we prove the primary results. Finally, an example is presented to demonstrate the theory obtained.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7938</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7020-3466</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2022-03, Vol.45 (5), p.2530-2541 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2636176093 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | almost sectorial operators existence fixed point theorem Fixed points (mathematics) Fractional calculus Hilfer fractional system Inclusions mild solution Operators (mathematics) |
title | A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20the%20existence%20of%20Hilfer%20fractional%20differential%20inclusions%20with%20almost%20sectorial%20operators&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Varun%20Bose,%20C.%20S.&rft.date=2022-03-30&rft.volume=45&rft.issue=5&rft.spage=2530&rft.epage=2541&rft.pages=2530-2541&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7938&rft_dat=%3Cproquest_cross%3E2636176093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636176093&rft_id=info:pmid/&rfr_iscdi=true |