MTAL: A Novel Chinese Herbal Medicine Classification Approach with Mutual Triplet Attention Learning
Chinese herbal medicine classification is a critical task in medication distribution and intelligent medicine, as well as a significant topic in computer vision. However, the majority of contemporary mainstream techniques are semiautomatic, with low efficiency and performance. To tackle this problem...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-02, Vol.2022, p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Hao, Wangli Han, Meng Li, Shancang Li, Fuzhong |
description | Chinese herbal medicine classification is a critical task in medication distribution and intelligent medicine, as well as a significant topic in computer vision. However, the majority of contemporary mainstream techniques are semiautomatic, with low efficiency and performance. To tackle this problem, a novel Chinese herbal medicine classification approach, Mutual Triplet Attention Learning (MTAL), is proposed. The motivation of our approach is to leverage a group of student networks to learn collaboratively and teach each other about cross-dimension dependencies throughout the training process, with the goal of quickly gaining strong feature representations and improving the outcomes. The results of the experiments show that MTAL outperforms other models in terms of accuracy and computation time. MTAL, in particular, improves accuracy by over 5.5 percent while reducing calculation time by over 50 percent. |
doi_str_mv | 10.1155/2022/8034435 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636150816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636150816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-d4b27e1537b95a4094d608e11043d49ea1bbff8ae6070d44aa0a2ceeb0b773183</originalsourceid><addsrcrecordid>eNp9kE1PhDAQhhujievqzR_QxKPiTmmh4I0QvxJWL-uZFBjcbhCwLW7893bdjUdPM5k8eefNQ8glg1vGomgRQhguEuBC8OiIzFjEIUhiKY__9jg9JWfWbgCAQ8hmpFmusuKOZvRl-MKO5mvdo0X6hKZSHV1io2t_oXmnrNWtrpXTQ0-zcTSDqtd0q92aLic3eXhl9Niho5lz2P9iBSrT6_79nJy0qrN4cZhz8vZwv8qfguL18TnPiqDmXLqgEVUo0TeVVRopAaloYkiQMRC8ESkqVlVtmyiMQUIjhFKgwhqxgkpKzhI-J1f7XN_uc0Lrys0wmd6_LMOYxyyChMWeutlTtRmsNdiWo9EfynyXDMqdx3LnsTx49Pj1HvdqGrXV_9M_lUtxSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636150816</pqid></control><display><type>article</type><title>MTAL: A Novel Chinese Herbal Medicine Classification Approach with Mutual Triplet Attention Learning</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hao, Wangli ; Han, Meng ; Li, Shancang ; Li, Fuzhong</creator><contributor>Lee, Ivan ; Ivan Lee</contributor><creatorcontrib>Hao, Wangli ; Han, Meng ; Li, Shancang ; Li, Fuzhong ; Lee, Ivan ; Ivan Lee</creatorcontrib><description>Chinese herbal medicine classification is a critical task in medication distribution and intelligent medicine, as well as a significant topic in computer vision. However, the majority of contemporary mainstream techniques are semiautomatic, with low efficiency and performance. To tackle this problem, a novel Chinese herbal medicine classification approach, Mutual Triplet Attention Learning (MTAL), is proposed. The motivation of our approach is to leverage a group of student networks to learn collaboratively and teach each other about cross-dimension dependencies throughout the training process, with the goal of quickly gaining strong feature representations and improving the outcomes. The results of the experiments show that MTAL outperforms other models in terms of accuracy and computation time. MTAL, in particular, improves accuracy by over 5.5 percent while reducing calculation time by over 50 percent.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/8034435</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Accuracy ; Classification ; Computer vision ; Datasets ; Discriminant analysis ; Experiments ; Herbal medicine ; Learning ; Medicine ; Methods ; Neural networks ; Support vector machines</subject><ispartof>Wireless communications and mobile computing, 2022-02, Vol.2022, p.1-9</ispartof><rights>Copyright © 2022 Wangli Hao et al.</rights><rights>Copyright © 2022 Wangli Hao et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-d4b27e1537b95a4094d608e11043d49ea1bbff8ae6070d44aa0a2ceeb0b773183</citedby><cites>FETCH-LOGICAL-c337t-d4b27e1537b95a4094d608e11043d49ea1bbff8ae6070d44aa0a2ceeb0b773183</cites><orcidid>0000-0001-6712-7063 ; 0000-0003-1933-2067 ; 0000-0003-0558-9988 ; 0000-0003-4674-0330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Lee, Ivan</contributor><contributor>Ivan Lee</contributor><creatorcontrib>Hao, Wangli</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Li, Shancang</creatorcontrib><creatorcontrib>Li, Fuzhong</creatorcontrib><title>MTAL: A Novel Chinese Herbal Medicine Classification Approach with Mutual Triplet Attention Learning</title><title>Wireless communications and mobile computing</title><description>Chinese herbal medicine classification is a critical task in medication distribution and intelligent medicine, as well as a significant topic in computer vision. However, the majority of contemporary mainstream techniques are semiautomatic, with low efficiency and performance. To tackle this problem, a novel Chinese herbal medicine classification approach, Mutual Triplet Attention Learning (MTAL), is proposed. The motivation of our approach is to leverage a group of student networks to learn collaboratively and teach each other about cross-dimension dependencies throughout the training process, with the goal of quickly gaining strong feature representations and improving the outcomes. The results of the experiments show that MTAL outperforms other models in terms of accuracy and computation time. MTAL, in particular, improves accuracy by over 5.5 percent while reducing calculation time by over 50 percent.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Discriminant analysis</subject><subject>Experiments</subject><subject>Herbal medicine</subject><subject>Learning</subject><subject>Medicine</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Support vector machines</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PhDAQhhujievqzR_QxKPiTmmh4I0QvxJWL-uZFBjcbhCwLW7893bdjUdPM5k8eefNQ8glg1vGomgRQhguEuBC8OiIzFjEIUhiKY__9jg9JWfWbgCAQ8hmpFmusuKOZvRl-MKO5mvdo0X6hKZSHV1io2t_oXmnrNWtrpXTQ0-zcTSDqtd0q92aLic3eXhl9Niho5lz2P9iBSrT6_79nJy0qrN4cZhz8vZwv8qfguL18TnPiqDmXLqgEVUo0TeVVRopAaloYkiQMRC8ESkqVlVtmyiMQUIjhFKgwhqxgkpKzhI-J1f7XN_uc0Lrys0wmd6_LMOYxyyChMWeutlTtRmsNdiWo9EfynyXDMqdx3LnsTx49Pj1HvdqGrXV_9M_lUtxSQ</recordid><startdate>20220227</startdate><enddate>20220227</enddate><creator>Hao, Wangli</creator><creator>Han, Meng</creator><creator>Li, Shancang</creator><creator>Li, Fuzhong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6712-7063</orcidid><orcidid>https://orcid.org/0000-0003-1933-2067</orcidid><orcidid>https://orcid.org/0000-0003-0558-9988</orcidid><orcidid>https://orcid.org/0000-0003-4674-0330</orcidid></search><sort><creationdate>20220227</creationdate><title>MTAL: A Novel Chinese Herbal Medicine Classification Approach with Mutual Triplet Attention Learning</title><author>Hao, Wangli ; Han, Meng ; Li, Shancang ; Li, Fuzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-d4b27e1537b95a4094d608e11043d49ea1bbff8ae6070d44aa0a2ceeb0b773183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Discriminant analysis</topic><topic>Experiments</topic><topic>Herbal medicine</topic><topic>Learning</topic><topic>Medicine</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Wangli</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Li, Shancang</creatorcontrib><creatorcontrib>Li, Fuzhong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Wangli</au><au>Han, Meng</au><au>Li, Shancang</au><au>Li, Fuzhong</au><au>Lee, Ivan</au><au>Ivan Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MTAL: A Novel Chinese Herbal Medicine Classification Approach with Mutual Triplet Attention Learning</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-02-27</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Chinese herbal medicine classification is a critical task in medication distribution and intelligent medicine, as well as a significant topic in computer vision. However, the majority of contemporary mainstream techniques are semiautomatic, with low efficiency and performance. To tackle this problem, a novel Chinese herbal medicine classification approach, Mutual Triplet Attention Learning (MTAL), is proposed. The motivation of our approach is to leverage a group of student networks to learn collaboratively and teach each other about cross-dimension dependencies throughout the training process, with the goal of quickly gaining strong feature representations and improving the outcomes. The results of the experiments show that MTAL outperforms other models in terms of accuracy and computation time. MTAL, in particular, improves accuracy by over 5.5 percent while reducing calculation time by over 50 percent.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/8034435</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6712-7063</orcidid><orcidid>https://orcid.org/0000-0003-1933-2067</orcidid><orcidid>https://orcid.org/0000-0003-0558-9988</orcidid><orcidid>https://orcid.org/0000-0003-4674-0330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-02, Vol.2022, p.1-9 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2636150816 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Classification Computer vision Datasets Discriminant analysis Experiments Herbal medicine Learning Medicine Methods Neural networks Support vector machines |
title | MTAL: A Novel Chinese Herbal Medicine Classification Approach with Mutual Triplet Attention Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MTAL:%20A%20Novel%20Chinese%20Herbal%20Medicine%20Classification%20Approach%20with%20Mutual%20Triplet%20Attention%20Learning&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Hao,%20Wangli&rft.date=2022-02-27&rft.volume=2022&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/8034435&rft_dat=%3Cproquest_cross%3E2636150816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636150816&rft_id=info:pmid/&rfr_iscdi=true |