Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism

In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2022-02, Vol.2022, p.1-9
Hauptverfasser: Ding, Meishuang, Zhao, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2022
creator Ding, Meishuang
Zhao, Jing
description In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local level based on the attention mechanism. Human decision-making patterns are imitated to evaluate the effectiveness of regional attention in real time. The level of attention mechanism is adaptively adjusted and focused layer by layer to achieve precise target detection and tracking. Second, with the target frame obtained from each frame, the pose estimation algorithm finds the key points of human body, enabling the human body pose optimization strategy to solve the crossover problem of the key points. Results of experiments on sports video images show that the proposed method has a higher accuracy in pose estimation than other algorithms and can help sportsmen adjust their training methods scientifically.
doi_str_mv 10.1155/2022/2141194
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636150706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636150706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5b548b6d5ea58d330bb90b5fba6fccaefde2280d1b74be09f682184eae7145893</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQP2InWRZUaKUiECrryI4njUsbF9st4u9JlYolq3nozL2ai9A1JfeUCjFihLERoymlRXqCBlRwkuQyy07_elmco4sQVoQQThgdoM93CKB81WDX4lkbYb22S2gjnoRoNyrabv0CsXEGuxpPdxvVzW5v2yVeKL-EiN9cAPygApiDxNiobbR7wOMYO5n-vGpUa8PmEp3Vah3g6liH6ONpsnicJvPX59njeJ5UnGcxEVqkuZZGgBK54ZxoXRAtaq1kXVUKagOM5cRQnaUaSFHLnNE8BQUZTUVe8CG66XW33n3tIMRy5Xa-7SxLJrmkgmREdtRdT1XeheChLre--9j_lJSUhzjLQ5zlMc4Ov-3xxrZGfdv_6V-ZWHT2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636150706</pqid></control><display><type>article</type><title>Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Ding, Meishuang ; Zhao, Jing</creator><contributor>Yuan, Xiaohui ; Xiaohui Yuan</contributor><creatorcontrib>Ding, Meishuang ; Zhao, Jing ; Yuan, Xiaohui ; Xiaohui Yuan</creatorcontrib><description>In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local level based on the attention mechanism. Human decision-making patterns are imitated to evaluate the effectiveness of regional attention in real time. The level of attention mechanism is adaptively adjusted and focused layer by layer to achieve precise target detection and tracking. Second, with the target frame obtained from each frame, the pose estimation algorithm finds the key points of human body, enabling the human body pose optimization strategy to solve the crossover problem of the key points. Results of experiments on sports video images show that the proposed method has a higher accuracy in pose estimation than other algorithms and can help sportsmen adjust their training methods scientifically.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/2141194</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Algorithms ; Decision making ; Deep learning ; Human body ; Moving targets ; Neural networks ; Optimization ; Physical education ; Pose estimation ; Target detection ; Tracking</subject><ispartof>Wireless communications and mobile computing, 2022-02, Vol.2022, p.1-9</ispartof><rights>Copyright © 2022 Meishuang Ding and Jing Zhao.</rights><rights>Copyright © 2022 Meishuang Ding and Jing Zhao. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5b548b6d5ea58d330bb90b5fba6fccaefde2280d1b74be09f682184eae7145893</citedby><cites>FETCH-LOGICAL-c337t-5b548b6d5ea58d330bb90b5fba6fccaefde2280d1b74be09f682184eae7145893</cites><orcidid>0000-0001-8987-9872 ; 0000-0002-4715-9655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Yuan, Xiaohui</contributor><contributor>Xiaohui Yuan</contributor><creatorcontrib>Ding, Meishuang</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><title>Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism</title><title>Wireless communications and mobile computing</title><description>In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local level based on the attention mechanism. Human decision-making patterns are imitated to evaluate the effectiveness of regional attention in real time. The level of attention mechanism is adaptively adjusted and focused layer by layer to achieve precise target detection and tracking. Second, with the target frame obtained from each frame, the pose estimation algorithm finds the key points of human body, enabling the human body pose optimization strategy to solve the crossover problem of the key points. Results of experiments on sports video images show that the proposed method has a higher accuracy in pose estimation than other algorithms and can help sportsmen adjust their training methods scientifically.</description><subject>Algorithms</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Human body</subject><subject>Moving targets</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physical education</subject><subject>Pose estimation</subject><subject>Target detection</subject><subject>Tracking</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQP2InWRZUaKUiECrryI4njUsbF9st4u9JlYolq3nozL2ai9A1JfeUCjFihLERoymlRXqCBlRwkuQyy07_elmco4sQVoQQThgdoM93CKB81WDX4lkbYb22S2gjnoRoNyrabv0CsXEGuxpPdxvVzW5v2yVeKL-EiN9cAPygApiDxNiobbR7wOMYO5n-vGpUa8PmEp3Vah3g6liH6ONpsnicJvPX59njeJ5UnGcxEVqkuZZGgBK54ZxoXRAtaq1kXVUKagOM5cRQnaUaSFHLnNE8BQUZTUVe8CG66XW33n3tIMRy5Xa-7SxLJrmkgmREdtRdT1XeheChLre--9j_lJSUhzjLQ5zlMc4Ov-3xxrZGfdv_6V-ZWHT2</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Ding, Meishuang</creator><creator>Zhao, Jing</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8987-9872</orcidid><orcidid>https://orcid.org/0000-0002-4715-9655</orcidid></search><sort><creationdate>20220223</creationdate><title>Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism</title><author>Ding, Meishuang ; Zhao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5b548b6d5ea58d330bb90b5fba6fccaefde2280d1b74be09f682184eae7145893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Human body</topic><topic>Moving targets</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physical education</topic><topic>Pose estimation</topic><topic>Target detection</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Meishuang</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Meishuang</au><au>Zhao, Jing</au><au>Yuan, Xiaohui</au><au>Xiaohui Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-02-23</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local level based on the attention mechanism. Human decision-making patterns are imitated to evaluate the effectiveness of regional attention in real time. The level of attention mechanism is adaptively adjusted and focused layer by layer to achieve precise target detection and tracking. Second, with the target frame obtained from each frame, the pose estimation algorithm finds the key points of human body, enabling the human body pose optimization strategy to solve the crossover problem of the key points. Results of experiments on sports video images show that the proposed method has a higher accuracy in pose estimation than other algorithms and can help sportsmen adjust their training methods scientifically.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/2141194</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8987-9872</orcidid><orcidid>https://orcid.org/0000-0002-4715-9655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2022-02, Vol.2022, p.1-9
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2636150706
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Algorithms
Decision making
Deep learning
Human body
Moving targets
Neural networks
Optimization
Physical education
Pose estimation
Target detection
Tracking
title Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Intelligent%20Estimation%20Method%20of%20Human%20Moving%20Target%20Pose%20Based%20on%20Adaptive%20Attention%20Mechanism&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Ding,%20Meishuang&rft.date=2022-02-23&rft.volume=2022&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/2141194&rft_dat=%3Cproquest_cross%3E2636150706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636150706&rft_id=info:pmid/&rfr_iscdi=true