Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism
In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local leve...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-02, Vol.2022, p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Ding, Meishuang Zhao, Jing |
description | In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local level based on the attention mechanism. Human decision-making patterns are imitated to evaluate the effectiveness of regional attention in real time. The level of attention mechanism is adaptively adjusted and focused layer by layer to achieve precise target detection and tracking. Second, with the target frame obtained from each frame, the pose estimation algorithm finds the key points of human body, enabling the human body pose optimization strategy to solve the crossover problem of the key points. Results of experiments on sports video images show that the proposed method has a higher accuracy in pose estimation than other algorithms and can help sportsmen adjust their training methods scientifically. |
doi_str_mv | 10.1155/2022/2141194 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636150706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636150706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5b548b6d5ea58d330bb90b5fba6fccaefde2280d1b74be09f682184eae7145893</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQP2InWRZUaKUiECrryI4njUsbF9st4u9JlYolq3nozL2ai9A1JfeUCjFihLERoymlRXqCBlRwkuQyy07_elmco4sQVoQQThgdoM93CKB81WDX4lkbYb22S2gjnoRoNyrabv0CsXEGuxpPdxvVzW5v2yVeKL-EiN9cAPygApiDxNiobbR7wOMYO5n-vGpUa8PmEp3Vah3g6liH6ONpsnicJvPX59njeJ5UnGcxEVqkuZZGgBK54ZxoXRAtaq1kXVUKagOM5cRQnaUaSFHLnNE8BQUZTUVe8CG66XW33n3tIMRy5Xa-7SxLJrmkgmREdtRdT1XeheChLre--9j_lJSUhzjLQ5zlMc4Ov-3xxrZGfdv_6V-ZWHT2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636150706</pqid></control><display><type>article</type><title>Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Ding, Meishuang ; Zhao, Jing</creator><contributor>Yuan, Xiaohui ; Xiaohui Yuan</contributor><creatorcontrib>Ding, Meishuang ; Zhao, Jing ; Yuan, Xiaohui ; Xiaohui Yuan</creatorcontrib><description>In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local level based on the attention mechanism. Human decision-making patterns are imitated to evaluate the effectiveness of regional attention in real time. The level of attention mechanism is adaptively adjusted and focused layer by layer to achieve precise target detection and tracking. Second, with the target frame obtained from each frame, the pose estimation algorithm finds the key points of human body, enabling the human body pose optimization strategy to solve the crossover problem of the key points. Results of experiments on sports video images show that the proposed method has a higher accuracy in pose estimation than other algorithms and can help sportsmen adjust their training methods scientifically.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/2141194</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Algorithms ; Decision making ; Deep learning ; Human body ; Moving targets ; Neural networks ; Optimization ; Physical education ; Pose estimation ; Target detection ; Tracking</subject><ispartof>Wireless communications and mobile computing, 2022-02, Vol.2022, p.1-9</ispartof><rights>Copyright © 2022 Meishuang Ding and Jing Zhao.</rights><rights>Copyright © 2022 Meishuang Ding and Jing Zhao. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5b548b6d5ea58d330bb90b5fba6fccaefde2280d1b74be09f682184eae7145893</citedby><cites>FETCH-LOGICAL-c337t-5b548b6d5ea58d330bb90b5fba6fccaefde2280d1b74be09f682184eae7145893</cites><orcidid>0000-0001-8987-9872 ; 0000-0002-4715-9655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Yuan, Xiaohui</contributor><contributor>Xiaohui Yuan</contributor><creatorcontrib>Ding, Meishuang</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><title>Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism</title><title>Wireless communications and mobile computing</title><description>In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local level based on the attention mechanism. Human decision-making patterns are imitated to evaluate the effectiveness of regional attention in real time. The level of attention mechanism is adaptively adjusted and focused layer by layer to achieve precise target detection and tracking. Second, with the target frame obtained from each frame, the pose estimation algorithm finds the key points of human body, enabling the human body pose optimization strategy to solve the crossover problem of the key points. Results of experiments on sports video images show that the proposed method has a higher accuracy in pose estimation than other algorithms and can help sportsmen adjust their training methods scientifically.</description><subject>Algorithms</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Human body</subject><subject>Moving targets</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physical education</subject><subject>Pose estimation</subject><subject>Target detection</subject><subject>Tracking</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQP2InWRZUaKUiECrryI4njUsbF9st4u9JlYolq3nozL2ai9A1JfeUCjFihLERoymlRXqCBlRwkuQyy07_elmco4sQVoQQThgdoM93CKB81WDX4lkbYb22S2gjnoRoNyrabv0CsXEGuxpPdxvVzW5v2yVeKL-EiN9cAPygApiDxNiobbR7wOMYO5n-vGpUa8PmEp3Vah3g6liH6ONpsnicJvPX59njeJ5UnGcxEVqkuZZGgBK54ZxoXRAtaq1kXVUKagOM5cRQnaUaSFHLnNE8BQUZTUVe8CG66XW33n3tIMRy5Xa-7SxLJrmkgmREdtRdT1XeheChLre--9j_lJSUhzjLQ5zlMc4Ov-3xxrZGfdv_6V-ZWHT2</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Ding, Meishuang</creator><creator>Zhao, Jing</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8987-9872</orcidid><orcidid>https://orcid.org/0000-0002-4715-9655</orcidid></search><sort><creationdate>20220223</creationdate><title>Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism</title><author>Ding, Meishuang ; Zhao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5b548b6d5ea58d330bb90b5fba6fccaefde2280d1b74be09f682184eae7145893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Human body</topic><topic>Moving targets</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physical education</topic><topic>Pose estimation</topic><topic>Target detection</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Meishuang</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Meishuang</au><au>Zhao, Jing</au><au>Yuan, Xiaohui</au><au>Xiaohui Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-02-23</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>In daily physical education, posture performance is an important basis for making excellent results. This paper explores an intelligent method to estimate the target pose based on adaptive attention mechanism. First, the regional attention is iteratively generated from a global level to a local level based on the attention mechanism. Human decision-making patterns are imitated to evaluate the effectiveness of regional attention in real time. The level of attention mechanism is adaptively adjusted and focused layer by layer to achieve precise target detection and tracking. Second, with the target frame obtained from each frame, the pose estimation algorithm finds the key points of human body, enabling the human body pose optimization strategy to solve the crossover problem of the key points. Results of experiments on sports video images show that the proposed method has a higher accuracy in pose estimation than other algorithms and can help sportsmen adjust their training methods scientifically.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/2141194</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8987-9872</orcidid><orcidid>https://orcid.org/0000-0002-4715-9655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-02, Vol.2022, p.1-9 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2636150706 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Algorithms Decision making Deep learning Human body Moving targets Neural networks Optimization Physical education Pose estimation Target detection Tracking |
title | Research on Intelligent Estimation Method of Human Moving Target Pose Based on Adaptive Attention Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Intelligent%20Estimation%20Method%20of%20Human%20Moving%20Target%20Pose%20Based%20on%20Adaptive%20Attention%20Mechanism&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Ding,%20Meishuang&rft.date=2022-02-23&rft.volume=2022&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/2141194&rft_dat=%3Cproquest_cross%3E2636150706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636150706&rft_id=info:pmid/&rfr_iscdi=true |