Design and Optimization of Indoor Space Layout Based on Deep Learning
In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2022-02, Vol.2022, p.1-7 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2022 |
creator | Sun, Yingfei |
description | In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm of indoor spatial layout design (ISLD) based on the adversarial neural network (ANN) is formed. In the algorithm design, a controllable data-interference adverse variation algorithm based on a random number generator is introduced, to obtain the data variant optimization process of genetic algorithm in neural network deep learning. As shown in the simulation analysis, the algorithm yielded significantly better subjective audience evaluation than other algorithms mentioned in references, and because it can be run offline on a single PC workstation, the demand for network resources and computing power resources is relatively small, so under the premise of the same hardware facility investment, higher production capacity can be obtained to get a higher input-output ratio, and it has a certain industry-university-research transformation and market promotion value. |
doi_str_mv | 10.1155/2022/2114884 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636150354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636150354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-dc86a66806d31fcf4ba6e4f0a2bb1e2adb1b3f372812659a1373283af2edb1d63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs3f0DAo67Nxya7PWpbtbDQgwq9LbObpKbYZE22lPrrTWnPnmbgfXiHeRC6peSRUiFGjDA2YpTmZZmfoQEtC5GNiViep10UeUZosbxEVzGuCZGEi2KAZlMd7cphcAovut5u7C_01jvsDZ475X3A7x20Glew99seP0PUCqd8qnWHKw3BWbe6RhcGvqO-Oc0h-nyZfUzesmrxOp88VVnLedFnqi0lSFkSqTg1rckbkDo3BFjTUM1ANbThhhespEyKMVBecFZyMEynSEk-RHfH3i74n62Ofb322-DSyZpJLqlIT-WJejhSbfAxBm3qLtgNhH1NSX0QVR9E1SdRCb8_4l_WKdjZ_-k_ClpmlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636150354</pqid></control><display><type>article</type><title>Design and Optimization of Indoor Space Layout Based on Deep Learning</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sun, Yingfei</creator><contributor>Khattak, Hasan Ali ; Hasan Ali Khattak</contributor><creatorcontrib>Sun, Yingfei ; Khattak, Hasan Ali ; Hasan Ali Khattak</creatorcontrib><description>In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm of indoor spatial layout design (ISLD) based on the adversarial neural network (ANN) is formed. In the algorithm design, a controllable data-interference adverse variation algorithm based on a random number generator is introduced, to obtain the data variant optimization process of genetic algorithm in neural network deep learning. As shown in the simulation analysis, the algorithm yielded significantly better subjective audience evaluation than other algorithms mentioned in references, and because it can be run offline on a single PC workstation, the demand for network resources and computing power resources is relatively small, so under the premise of the same hardware facility investment, higher production capacity can be obtained to get a higher input-output ratio, and it has a certain industry-university-research transformation and market promotion value.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2022/2114884</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Brain research ; Deep learning ; Design optimization ; Fuzzy logic ; Genetic algorithms ; Interior design ; Layouts ; Machine learning ; Neural networks ; Optimization ; Random numbers ; Software ; Variables ; Workstations</subject><ispartof>Mobile information systems, 2022-02, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Yingfei Sun.</rights><rights>Copyright © 2022 Yingfei Sun. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-dc86a66806d31fcf4ba6e4f0a2bb1e2adb1b3f372812659a1373283af2edb1d63</citedby><cites>FETCH-LOGICAL-c337t-dc86a66806d31fcf4ba6e4f0a2bb1e2adb1b3f372812659a1373283af2edb1d63</cites><orcidid>0000-0002-6560-5014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Khattak, Hasan Ali</contributor><contributor>Hasan Ali Khattak</contributor><creatorcontrib>Sun, Yingfei</creatorcontrib><title>Design and Optimization of Indoor Space Layout Based on Deep Learning</title><title>Mobile information systems</title><description>In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm of indoor spatial layout design (ISLD) based on the adversarial neural network (ANN) is formed. In the algorithm design, a controllable data-interference adverse variation algorithm based on a random number generator is introduced, to obtain the data variant optimization process of genetic algorithm in neural network deep learning. As shown in the simulation analysis, the algorithm yielded significantly better subjective audience evaluation than other algorithms mentioned in references, and because it can be run offline on a single PC workstation, the demand for network resources and computing power resources is relatively small, so under the premise of the same hardware facility investment, higher production capacity can be obtained to get a higher input-output ratio, and it has a certain industry-university-research transformation and market promotion value.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Brain research</subject><subject>Deep learning</subject><subject>Design optimization</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Interior design</subject><subject>Layouts</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Random numbers</subject><subject>Software</subject><subject>Variables</subject><subject>Workstations</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1LAzEQhoMoWKs3f0DAo67Nxya7PWpbtbDQgwq9LbObpKbYZE22lPrrTWnPnmbgfXiHeRC6peSRUiFGjDA2YpTmZZmfoQEtC5GNiViep10UeUZosbxEVzGuCZGEi2KAZlMd7cphcAovut5u7C_01jvsDZ475X3A7x20Glew99seP0PUCqd8qnWHKw3BWbe6RhcGvqO-Oc0h-nyZfUzesmrxOp88VVnLedFnqi0lSFkSqTg1rckbkDo3BFjTUM1ANbThhhespEyKMVBecFZyMEynSEk-RHfH3i74n62Ofb322-DSyZpJLqlIT-WJejhSbfAxBm3qLtgNhH1NSX0QVR9E1SdRCb8_4l_WKdjZ_-k_ClpmlA</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Sun, Yingfei</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6560-5014</orcidid></search><sort><creationdate>20220223</creationdate><title>Design and Optimization of Indoor Space Layout Based on Deep Learning</title><author>Sun, Yingfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-dc86a66806d31fcf4ba6e4f0a2bb1e2adb1b3f372812659a1373283af2edb1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Brain research</topic><topic>Deep learning</topic><topic>Design optimization</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Interior design</topic><topic>Layouts</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Random numbers</topic><topic>Software</topic><topic>Variables</topic><topic>Workstations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yingfei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yingfei</au><au>Khattak, Hasan Ali</au><au>Hasan Ali Khattak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Optimization of Indoor Space Layout Based on Deep Learning</atitle><jtitle>Mobile information systems</jtitle><date>2022-02-23</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm of indoor spatial layout design (ISLD) based on the adversarial neural network (ANN) is formed. In the algorithm design, a controllable data-interference adverse variation algorithm based on a random number generator is introduced, to obtain the data variant optimization process of genetic algorithm in neural network deep learning. As shown in the simulation analysis, the algorithm yielded significantly better subjective audience evaluation than other algorithms mentioned in references, and because it can be run offline on a single PC workstation, the demand for network resources and computing power resources is relatively small, so under the premise of the same hardware facility investment, higher production capacity can be obtained to get a higher input-output ratio, and it has a certain industry-university-research transformation and market promotion value.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2022/2114884</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6560-5014</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2022-02, Vol.2022, p.1-7 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2636150354 |
source | Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Automation Brain research Deep learning Design optimization Fuzzy logic Genetic algorithms Interior design Layouts Machine learning Neural networks Optimization Random numbers Software Variables Workstations |
title | Design and Optimization of Indoor Space Layout Based on Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Optimization%20of%20Indoor%20Space%20Layout%20Based%20on%20Deep%20Learning&rft.jtitle=Mobile%20information%20systems&rft.au=Sun,%20Yingfei&rft.date=2022-02-23&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2022/2114884&rft_dat=%3Cproquest_cross%3E2636150354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636150354&rft_id=info:pmid/&rfr_iscdi=true |