Design and Optimization of Indoor Space Layout Based on Deep Learning

In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2022-02, Vol.2022, p.1-7
1. Verfasser: Sun, Yingfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Mobile information systems
container_volume 2022
creator Sun, Yingfei
description In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm of indoor spatial layout design (ISLD) based on the adversarial neural network (ANN) is formed. In the algorithm design, a controllable data-interference adverse variation algorithm based on a random number generator is introduced, to obtain the data variant optimization process of genetic algorithm in neural network deep learning. As shown in the simulation analysis, the algorithm yielded significantly better subjective audience evaluation than other algorithms mentioned in references, and because it can be run offline on a single PC workstation, the demand for network resources and computing power resources is relatively small, so under the premise of the same hardware facility investment, higher production capacity can be obtained to get a higher input-output ratio, and it has a certain industry-university-research transformation and market promotion value.
doi_str_mv 10.1155/2022/2114884
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636150354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636150354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-dc86a66806d31fcf4ba6e4f0a2bb1e2adb1b3f372812659a1373283af2edb1d63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs3f0DAo67Nxya7PWpbtbDQgwq9LbObpKbYZE22lPrrTWnPnmbgfXiHeRC6peSRUiFGjDA2YpTmZZmfoQEtC5GNiViep10UeUZosbxEVzGuCZGEi2KAZlMd7cphcAovut5u7C_01jvsDZ475X3A7x20Glew99seP0PUCqd8qnWHKw3BWbe6RhcGvqO-Oc0h-nyZfUzesmrxOp88VVnLedFnqi0lSFkSqTg1rckbkDo3BFjTUM1ANbThhhespEyKMVBecFZyMEynSEk-RHfH3i74n62Ofb322-DSyZpJLqlIT-WJejhSbfAxBm3qLtgNhH1NSX0QVR9E1SdRCb8_4l_WKdjZ_-k_ClpmlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636150354</pqid></control><display><type>article</type><title>Design and Optimization of Indoor Space Layout Based on Deep Learning</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sun, Yingfei</creator><contributor>Khattak, Hasan Ali ; Hasan Ali Khattak</contributor><creatorcontrib>Sun, Yingfei ; Khattak, Hasan Ali ; Hasan Ali Khattak</creatorcontrib><description>In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm of indoor spatial layout design (ISLD) based on the adversarial neural network (ANN) is formed. In the algorithm design, a controllable data-interference adverse variation algorithm based on a random number generator is introduced, to obtain the data variant optimization process of genetic algorithm in neural network deep learning. As shown in the simulation analysis, the algorithm yielded significantly better subjective audience evaluation than other algorithms mentioned in references, and because it can be run offline on a single PC workstation, the demand for network resources and computing power resources is relatively small, so under the premise of the same hardware facility investment, higher production capacity can be obtained to get a higher input-output ratio, and it has a certain industry-university-research transformation and market promotion value.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2022/2114884</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Brain research ; Deep learning ; Design optimization ; Fuzzy logic ; Genetic algorithms ; Interior design ; Layouts ; Machine learning ; Neural networks ; Optimization ; Random numbers ; Software ; Variables ; Workstations</subject><ispartof>Mobile information systems, 2022-02, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Yingfei Sun.</rights><rights>Copyright © 2022 Yingfei Sun. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-dc86a66806d31fcf4ba6e4f0a2bb1e2adb1b3f372812659a1373283af2edb1d63</citedby><cites>FETCH-LOGICAL-c337t-dc86a66806d31fcf4ba6e4f0a2bb1e2adb1b3f372812659a1373283af2edb1d63</cites><orcidid>0000-0002-6560-5014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Khattak, Hasan Ali</contributor><contributor>Hasan Ali Khattak</contributor><creatorcontrib>Sun, Yingfei</creatorcontrib><title>Design and Optimization of Indoor Space Layout Based on Deep Learning</title><title>Mobile information systems</title><description>In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm of indoor spatial layout design (ISLD) based on the adversarial neural network (ANN) is formed. In the algorithm design, a controllable data-interference adverse variation algorithm based on a random number generator is introduced, to obtain the data variant optimization process of genetic algorithm in neural network deep learning. As shown in the simulation analysis, the algorithm yielded significantly better subjective audience evaluation than other algorithms mentioned in references, and because it can be run offline on a single PC workstation, the demand for network resources and computing power resources is relatively small, so under the premise of the same hardware facility investment, higher production capacity can be obtained to get a higher input-output ratio, and it has a certain industry-university-research transformation and market promotion value.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Brain research</subject><subject>Deep learning</subject><subject>Design optimization</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Interior design</subject><subject>Layouts</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Random numbers</subject><subject>Software</subject><subject>Variables</subject><subject>Workstations</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1LAzEQhoMoWKs3f0DAo67Nxya7PWpbtbDQgwq9LbObpKbYZE22lPrrTWnPnmbgfXiHeRC6peSRUiFGjDA2YpTmZZmfoQEtC5GNiViep10UeUZosbxEVzGuCZGEi2KAZlMd7cphcAovut5u7C_01jvsDZ475X3A7x20Glew99seP0PUCqd8qnWHKw3BWbe6RhcGvqO-Oc0h-nyZfUzesmrxOp88VVnLedFnqi0lSFkSqTg1rckbkDo3BFjTUM1ANbThhhespEyKMVBecFZyMEynSEk-RHfH3i74n62Ofb322-DSyZpJLqlIT-WJejhSbfAxBm3qLtgNhH1NSX0QVR9E1SdRCb8_4l_WKdjZ_-k_ClpmlA</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Sun, Yingfei</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6560-5014</orcidid></search><sort><creationdate>20220223</creationdate><title>Design and Optimization of Indoor Space Layout Based on Deep Learning</title><author>Sun, Yingfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-dc86a66806d31fcf4ba6e4f0a2bb1e2adb1b3f372812659a1373283af2edb1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Brain research</topic><topic>Deep learning</topic><topic>Design optimization</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Interior design</topic><topic>Layouts</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Random numbers</topic><topic>Software</topic><topic>Variables</topic><topic>Workstations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yingfei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yingfei</au><au>Khattak, Hasan Ali</au><au>Hasan Ali Khattak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Optimization of Indoor Space Layout Based on Deep Learning</atitle><jtitle>Mobile information systems</jtitle><date>2022-02-23</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>In order to explore the technical path of using artificial intelligence deep learning algorithm in realizing the interior space layout, this study introduces neural network modules such as 3D spatial convolutional (3DSC) neural networks and fuzzy neural networks (FNN), and a deep learning algorithm of indoor spatial layout design (ISLD) based on the adversarial neural network (ANN) is formed. In the algorithm design, a controllable data-interference adverse variation algorithm based on a random number generator is introduced, to obtain the data variant optimization process of genetic algorithm in neural network deep learning. As shown in the simulation analysis, the algorithm yielded significantly better subjective audience evaluation than other algorithms mentioned in references, and because it can be run offline on a single PC workstation, the demand for network resources and computing power resources is relatively small, so under the premise of the same hardware facility investment, higher production capacity can be obtained to get a higher input-output ratio, and it has a certain industry-university-research transformation and market promotion value.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2022/2114884</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6560-5014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2022-02, Vol.2022, p.1-7
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2636150354
source Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Automation
Brain research
Deep learning
Design optimization
Fuzzy logic
Genetic algorithms
Interior design
Layouts
Machine learning
Neural networks
Optimization
Random numbers
Software
Variables
Workstations
title Design and Optimization of Indoor Space Layout Based on Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Optimization%20of%20Indoor%20Space%20Layout%20Based%20on%20Deep%20Learning&rft.jtitle=Mobile%20information%20systems&rft.au=Sun,%20Yingfei&rft.date=2022-02-23&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2022/2114884&rft_dat=%3Cproquest_cross%3E2636150354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636150354&rft_id=info:pmid/&rfr_iscdi=true